Cognitive control covers a broad range of cognitive functions, but its research and theories typically remain tied to a single domain. Here we outline and review an associative learning perspective on cognitive control in which control emerges from associative networks containing perceptual, motor, and goal representations. Our review identifies 3 trending research themes that are shared between the domains of conflict adaptation, task switching, response inhibition, and attentional control: Cognitive control is context-specific, can operate in the absence of awareness, and is modulated by reward. As these research themes can be envisaged as key characteristics of learning, we propose that their joint emergence across domains is not coincidental but rather reflects a (latent) growth of interest in learning-based control. Associative learning has the potential for providing broad-scaled integration to cognitive control theory, and offers a promising avenue for understanding cognitive control as a self-regulating system without postulating an ill-defined set of homunculi. We discuss novel predictions, theoretical implications, and immediate challenges that accompany an associative learning perspective on cognitive control. (PsycINFO Database Record
SummaryData analysis workflows in many scientific domains have become increasingly complex and flexible. To assess the impact of this flexibility on functional magnetic resonance imaging (fMRI) results, the same dataset was independently analyzed by 70 teams, testing nine ex-ante hypotheses. The flexibility of analytic approaches is exemplified by the fact that no two teams chose identical workflows to analyze the data. This flexibility resulted in sizeable variation in hypothesis test results, even for teams whose statistical maps were highly correlated at intermediate stages of their analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Importantly, meta-analytic approaches that aggregated information across teams yielded significant consensus in activated regions across teams. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset. Our findings show that analytic flexibility can have substantial effects on scientific conclusions, and demonstrate factors related to variability in fMRI. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for multiple analyses of the same data. Potential approaches to mitigate issues related to analytical variability are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.