Whole genome amplification (WGA) has become an invaluable tool to perform copy number variation (CNV) detection in single, or a limited number of cells. Unfortunately, current WGA methods introduce representation bias that limits the detection of small CNVs. New WGA methods have been introduced that might have the potential to reduce this bias. We compared the performance of PicoPLEX DNA-Seq (Picoseq), DOPlify, REPLI-g and Ampli-1 WGA for aneuploidy screening and copy number analysis using shallow whole genome massively parallel sequencing (MPS), starting from single or a limited number of cells. Although the four WGA methods perform differently, they are all suited for this application.
One of the latest developments in next generation sequencing is the Oxford Nanopore Technologies’ (ONT) MinION nanopore sequencer. We studied the applicability of this system to perform forensic genotyping of the forensic female DNA standard 9947 A using the 52 SNP-plex assay developed by the SNPforID consortium. All but one of the loci were correctly genotyped. Several SNP loci were identified as problematic for correct and robust genotyping using nanopore sequencing. All these loci contained homopolymers in the sequence flanking the forensic SNP and most of them were already reported as problematic in studies using other sequencing technologies. When these problematic loci are avoided, correct forensic genotyping using nanopore sequencing is technically feasible.
The potential and current state-of-the-art of forensic SNP genotyping using nanopore sequencing was investigated with a panel of 16 tri-allelic single nucleotide polymorphisms (SNPs), multiplexing five samples per sequencing run. The sample set consisted of three single-source human genomic reference control DNA samples and two GEDNAP samples, simulating casework samples. The primers for the multiplex SNP-loci PCR were taken from a study which researched their value in a forensic setting using conventional single-base extension technology. Workflows for multiplexed Oxford Nanopore Technologies' 1D and 1D 2 sequencing were developed that provide correct genotyping of most SNP loci. Loci that are problematic for nanopore sequencing were characterized. When such loci are avoided, nanopore sequencing of forensic tri-allelic SNPs is technically feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.