Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz
(2020) APPLICATIONS OF MATHEMATICSNo. 6, 785-805
The discrete Toda molecule equation can be used to compute eigenvalues of tridiagonal matrices over conventional linear algebra, and is the recursion formula of the well-known quotient difference algorithm for tridiagonal eigenvalues. An ultradiscretization of the discrete Toda equation leads to the ultradiscrete Toda (udToda) equation, which describes motions of balls in the box and ball system. In this paper, we associate the udToda equation with eigenvalues of tridiagonal matrices over min-plus algebra, which is a semiring with two operation types: and . We also clarify an interpretation of the udToda variables in weighted and directed graphs consisting of vertices and edges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.