The Familial Mediterranean Fever (FMF) shows an autosomal recessive pattern of inheritance and affects certain ethnic groups. Disease is caused by mutations in MEFV gene and more than 180 mutations have been defined in affected individuals. Current study aimed to determine the frequency-type of the mutations for MEFV gene in Sivas-middle Anatolian city. The cohort was composed of 3340 patients. MEFV gene mutations were studied by multiplex PCR based reverse hybridization stripAssay method. Patients' clinical features were; family history: 68%, erysipelas-like erythema: 17.6%, fever: 89.9%, abdominal pain: 84.2%, peritonitis: 90.2%, arthritis: 33%, pleuritis: 14.2%, parental consanguinity: 21.2%. Current results revealed that M694V is the most frequent mutation (43.12%), followed by E148Q (20.18), M680I(G/C) (15.00%) and V726A (11.32%). The study population has a high rate of carriers and the E148Q mutation frequency was found to be highest when compared to the other regions of Turkey and other Mediterranean groups.
BackgroundChromosomal microarray analysis is a first-stage test that is used for the diagnosis of intellectual disability and global developmental delay. Chromosomal microarray analysis can detect well-known microdeletion syndromes. It also contributes to the identification of genes that are responsible for the phenotypes in the new copy number variations.ResultsChromosomal microarray analysis was conducted on 124 patients with intellectual disability and global developmental delay. Multiplex ligation-dependent probe amplification was used for the confirmation of chromosome 22q11.2 deletion/duplication. 26 pathogenic and likely pathogenic copy number variations were detected in 23 patients (18.55%) in a group of 124 Turkish patients with intellectual disability and global developmental delay. Chromosomal microarray analysis revealed pathogenic de novo Copy number variations, such as a novel 2.9-Mb de novo deletion at 18q22 region with intellectual disability and autism spectrum disorder, and a 22q11.2 region homozygote duplication with new clinical features.ConclusionOur data expand the spectrum of 22q11.2 region mutations, reveal new loci responsible from autism spectrum disorder and provide new insights into the genotype–phenotype correlations of intellectual disability and global developmental delay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.