Fetal movement is an important clinical indicator to assess fetus growth and development status in the uterus. In recent years, a noninvasive intelligent sensing fetal movement detection system that can monitor high-risk pregnancies at home has received a lot of attention in the field of wearable health monitoring. However, recovering fetal movement signals from a continuous low-amplitude background that is heavily contaminated with noise and recognizing real fetal movements is a challenging task. In this paper, fetal movement can be efficiently recognized by combining the strength of Kalman filtering, time and frequency domain and wavelet domain feature extraction, and hyperparameter tuned Light Gradient Boosting Machine (LightGBM) model. Firstly, the Kalman filtering (KF) algorithm is used to recover the fetal movement signal in a continuous low-amplitude background contaminated by noise. Secondly, the time domain, frequency domain, and wavelet domain (TFWD) features of the preprocessed fetal movement signal are extracted. Finally, the Bayesian Optimization algorithm (BOA) is used to optimize the LightGBM model to obtain the optimal hyperparameters. Through this, the accurate prediction and recognition of fetal movement are successfully achieved. In the performance analysis of the Zenodo fetal movement dataset, the proposed KF + TFWD + BOA-LGBM approach’s recognition accuracy and F1-Score reached 94.06% and 96.85%, respectively. Compared with 8 existing advanced methods for fetal movement signal recognition, the proposed method has better accuracy and robustness, indicating its potential medical application in wearable smart sensing systems for fetal prenatal health monitoring.
Fetal movement (FM) is an essential physiological parameter to determine the health status of the fetus. To address the problems of harrowing FM signal extraction and the low recognition rate of traditional machine learning classifiers in FM signal detection, this paper develops a passive FM signal detection system based on intelligent sensing technology. FM signals are obtained from the abdomen of the pregnant woman by using accelerometers. The FM signals are extracted and identified according to the clinical nature of the features hidden in the amplitude and waveform of the FM signals that fluctuate in duration. The system consists of four main stages: (i) FM signal preprocessing, (ii) maternal artifact signal preidentification, (iii) FM signal identification, and (iv) FM classification. Firstly, Kalman filtering is used to reconstruct the FM signal in a continuous low-amplitude noise background. Secondly, the maternal artifact signal is identified using an amplitude threshold algorithm. Then, an innovative dictionary learning algorithm is used to construct a dictionary of FM features, and orthogonal matching pursuit and adaptive filtering algorithms are used to identify the FM signals, respectively. Finally, mask fusion classification is performed based on the multiaxis recognition results. Experiments are conducted to evaluate the performance of the proposed FM detection system using publicly available and self-built accelerated FM datasets. The classification results showed that the orthogonal matching pursuit algorithm was more effective than the adaptive filtering algorithm in identifying FM signals, with a positive prediction value of 89.74%. The proposed FM detection system has great potential and promise for wearable FM health monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.