Gene delivery requires tailor-made design for each type of nucleic acid. PEGylation influenced mRNA-polymer binding efficiency and transfection and may provide a method of further improving mRNA delivery.
Oligo(ethylene glycol) methyl ether methacrylates (OEGMA) of various chain lengths (i.e., 9, 23, or 45 EG units) and N,N-dimethylaminoethyl methacrylate (DMAEMA) were copolymerized by atom transfer radical polymerization (ATRP), yielding well-defined P(DMAEMA-co-OEGMA) copolymers with increasing OEGMA molar fractions (F
OEGMA) but a comparable degree of polymerization (DP ∼ 120). Increase of both F
OEGMA and OEGMA chain lengths correlated inversely with gene vector size, morphology, and zeta potential. P(DMAEMA-co-OEGMA) copolymers prevented gene vector aggregation at high plasmid DNA (pDNA) concentrations in isotonic solution and did not induce cytotoxicity even at high concentrations. Transfection efficiency of the most efficient P(DMAEMA-co-OEGMA) copolymers was found to be >10-fold lower compared with branched polyethylenimine (PEI) 25 kDa. Although OEGMA copolymerization largely reduced gene vector binding with the cell surface, cellular internalization of the bound complexes was less affected. These observations suggest that inefficient endolysosomal escape limits transfection efficiency of P(DMAEMA-co-OEGMA) copolymer gene vectors. Despite this observation, optimized p(DMAEMA-co-OEGMA) gene vectors remained stable under conditions for in vivo application leading to 7-fold greater gene expression in the lungs compared with PEI. Tailor-made P(DMAEMA-co-OEGMA) copolymers are promising nonviral gene transfer agents that fulfill the requirements for successful in vivo gene delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.