By 2050, the rice production needs to be increased by at least 50% in order to meet the growing food demands of the global population. Among various yield limiting factors, high temperature is fast becoming a major threat to sustain rice yields due to its increased frequency of occurrence and severity of stress events. The development of heat-resilient rice cultivars has been slow due to the lack of relevant donors for heat tolerance traits and limited information regarding the genetic basis of these component traits. The early morning flowering (EMF) trait, contributing to heat escape by promoting flowering/anthesis during cooler hours in the morning is demonstrated to offer protection against high-temperature-induced failure of pollination and fertilization. In this study, evaluation of CO 51, IR64 and IR64-qEMF3 (NIL of IR64 harboring QTL promoting EMF revealed that qEMF3 promoted early morning flowering in IR64-qEMF3 (1½ to 2 h earlier than IR64) and thereby reduced the sterility by about 8.15%. Attempts through marker-assisted backcross breeding led to development of advanced backcross progenies (NILs) of CO 51, harboring qEMF3. Evaluation of 88 BC3F2 progenies identified 19 progenies harboring qEMF3 under homozygous conditions. Evaluation of NILs of CO 51 harboring qEMF3 during summer 2019 revealed that the NILs exhibited early (7.30 a.m.) onset of anthesis by 1½ h and completed its peak anthesis well around cooler hours (9.30 a.m.) of the day and thereby recorded reduced spikelet sterility (7.8–9.0%) than their recurrent parent CO 51 (19.2%). The current study clearly demonstrated the efficacy of early morning flowering in the mitigation of yield losses under high-temperature conditions in a farmer preferred rice variety.
Stomata regulates conductance, transpiration and photosynthetic traits in plants. Increased stomatal density may contribute to enhanced water loss and thereby help improve the transpirational cooling process and mitigate the high temperature-induced yield losses. However, genetic manipulation of stomatal traits through conventional breeding still remains a challenge due to problems involved in phenotyping and the lack of suitable genetic materials. Recent advances in functional genomics in rice identified major effect genes determining stomatal traits, including its number and size. Widespread applications of CRISPR/Cas9 in creating targeted mutations paved the way for fine tuning the stomatal traits for enhancing climate resilience in crops. In the current study, attempts were made to create novel alleles of OsEPF1 (Epidermal Patterning Factor), a negative regulator of stomatal frequency/density in a popular rice variety, ASD 16, using the CRISPR/Cas9 approach. Evaluation of 17 T0 progenies identified varying mutations (seven multiallelic, seven biallelic and three monoallelic mutations). T0 mutant lines showed a 3.7–44.3% increase in the stomatal density, and all the mutations were successfully inherited into the T1 generation. Evaluation of T1 progenies through sequencing identified three homozygous mutants for one bp insertion. Overall, T1 plants showed 54–95% increased stomatal density. The homozygous T1 lines (# E1-1-4, # E1-1-9 and # E1-1-11) showed significant increase in the stomatal conductance (60–65%), photosynthetic rate (14–31%) and the transpiration rate (58–62%) compared to the nontransgenic ASD 16. Results demonstrated that the genetic alterations in OsEPF1 altered the stomatal density, stomatal conductance and photosynthetic efficiency in rice. Further experiments are needed to associate this technology with canopy cooling and high temperature tolerance.
Traditional rice landraces are treasures for novel genes to develop climate-resilient cultivars. Seed viability and germination determine rice productivity under moisture stress. The present study evaluated 100 rice genotypes, including 85 traditional landraces and 15 improved cultivars from various agro-ecological zones of Tamil Nadu, along with moisture-stress-susceptible (IR 64) and moisture-stress-tolerant (IR 64 Drt1) checks. The landraces were screened over a range of osmotic potentials, namely (−) 1.0 MPa, (−) 1.25 MPa and (−) 1.5 MPa, for a period of 5 days in PEG-induced moisture stress. Physio-morphological traits, such as rate of germination, root and shoot length, vigor index, R/S ratio and relative water content (RWC), were assessed during early moisture stress at the maximum OP of (−) 1.5 MPa. The seed macromolecules, phytohormones (giberellic acid, auxin (IAA), cytokinin and abscisic acid), osmolytes and enzymatic antioxidants (catalase and superoxide dismutase) varied significantly between moisture stress and control treatments. The genotype Kuliyadichan registered more IAA and giberellic acid (44% and 35%, respectively, over moisture-stress-tolerant check (IR 64 Drt1), whereas all the landraces showed an elevated catalase activity, thus indicating that the tolerant landraces effectively eliminate oxidative damages. High-performance liquid chromatography analysis showed a reduction in cytokinin and an increase in ABA level under induced moisture stress. Hence, the inherent moisture-stress tolerance of six traditional landraces, such as Kuliyadichan, Rajalakshmi, Sahbhagi Dhan, Nootripathu, Chandaikar and Mallikar, was associated with metabolic responses, such as activation of hydrolytic enzymes, hormonal crosstalk, ROS signaling and antioxidant enzymes (especially catalase), when compared to the susceptible check, IR 64. Hence, these traditional rice landraces can serve as potential donors for introgression or pyramiding moisture-stress-tolerance traits toward developing climate-resilient rice cultivars.
Proso millet (Panicummiliaceum L.) is a short-duration C4 crop that is drought tolerant and nutritionally rich and can grow well in marginal lands. Though the crop has many climate-resilient traits like tolerance to drought and heat, its yield is lower than that of common cereals like rice, wheat, and maize. Being an underutilized crop, the molecular resources in the crop are limited. The main aim of the present study was to develop and characterize contrasting mutants for yield and generate functional genomic information for the trait in proso millet. Gamma irradiation-induced mutant population was screened to identify high-yielding mutants, which were evaluated up to M4 generation. One mutant with a dense panicle and high yield (ATL_hy) and one with a lax panicle and low yield (ATL_ly) along with the wild type were sequenced using the genotyping-by-sequencing approach. The variants detected as single nucleotide polymorphisms (SNPs) and insertions–deletions (InDels) were annotated against the reference genome of proso millet. Bioinformatic analyses using the National Center for Biotechnology Information (NCBI) and UniProt databases were performed to elucidate genetic information related to the SNP variations. A total of 25,901, 30,335, and 31,488 SNPs, respectively, were detected in the wild type, ATL_hy mutants, and ATL_ly mutants. The total number of functional SNPs identified in high-yielding and low-yielding mutants was 84 and 171, respectively. Two functional SNPs in the high-yielding mutant (ATL_hy) and one in the low-yielding mutant (ATL_ly) corresponded to the gene coding for “E3 ubiquitin-protein ligase UPL7”. Pathway mapping of the functional SNPs identified that two SNPs in ATL_ly were involved in the starch biosynthetic pathway coding for the starch synthase enzyme. This information can be further used in identifying genes responsible for various metabolic processes in proso millet and in designing useful genetic markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.