The unregulated proliferation of counterfeit news creation and dissemination that has been seen in recent years poses a constant threat to democracy. Fake news articles have the power to persuade individuals, leaving them perplexed. This scientometric study examined 569 documents from the Scopus database between 2012 and mid-2022 to look for general research trends, publication and citation structures, authorship and collaboration patterns, bibliographic coupling, and productivity patterns in order to identify fake news using deep learning. For this study, Biblioshiny and VOSviewer were used. The findings of this study clearly demonstrate a trend toward an increase in publications since 2016, and this dissemination of fake news is still an issue from a global perspective. Thematic analysis of papers reveals that research topics related to social media for surveillance and monitoring of public attitudes and perceptions, as well as fake news, are crucial but underdeveloped, while studies on deep fake detection, digital contents, digital forensics, and computer vision constitute niche areas. Furthermore, the results show that China and the USA have the strongest international collaboration, despite India writing more articles. This paper also examines the current state of the art in deep learning techniques for fake news detection, with the goal of providing a potential roadmap for researchers interested in undertaking research in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.