The monocytic leukemic zinc-finger (MOZ) histone acetyltransferase (HAT) acetylates free histones H3, H4, H2A, and H2B in vitro and is associated with up-regulation of gene transcription. The MOZ HAT functions as a quaternary complex with the bromodomain-PHD finger protein 1 (BRPF1), inhibitor of growth 5 (ING5), and hEaf6 subunits. BRPF1 links the MOZ catalytic subunit to the ING5 and hEaf6 subunits, thereby promoting MOZ HAT activity. Human BRPF1 contains multiple effector domains with known roles in gene transcription, and chromatin binding and remodeling. However, the biological function of the BRPF1 bromodomain remains unknown. Our findings reveal novel interactions of the BRPF1 bromodomain with multiple acetyllysine residues on the N-terminus of histones, and show it preferentially selects for H2AK5ac, H4K12ac and H3K14ac. We used chemical shift perturbation data from NMR titration experiments to map the BRPF1 bromodomain ligand binding pocket and identified key residues responsible for coordination of the post-translationally modified histones. Extensive molecular dynamics simulations were used to generate structural models of bromodomain-histone ligand complexes, to analyze H-bonding and other interactions, and to calculate the binding free energies. Our results outline the molecular mechanism driving binding specificity of the BRPF1 bromodomain for discrete acetyllysine residues on the N-terminal histone tails. Together these data provide insights on how histone recognition by the bromodomain directs the biological function of BRPF1, ultimately targeting the MOZ HAT complex to chromatin substrates.
The ligand-binding sites of many G protein-coupled receptors (GPCRs) are situated around and deeply embedded within the central pocket formed by their seven transmembrane-spanning a-helical domains. Generally, these binding sites are assumed accessible to endogenous ligands from the aqueous phase. Recent advances in the structural biology of GPCRs, along with biophysical and computational studies, suggest that amphiphilic and lipophilic molecules may gain access to these receptors by first partitioning into the membrane and then reaching the binding site via lateral diffusion through the lipid bilayer. In addition, several crystal structures of class A and class B GPCRs bound to their ligands offer unprecedented details on the existence of lipid-facing allosteric binding sites outside the transmembrane helices that can only be reached via lipid pathways. The highly organized structure of the lipid bilayer may direct lipophilic or amphiphilic drugs to a specific depth within the bilayer, changing local concentration of the drug near the binding site and affecting its binding kinetics. Additionally, the constraints of the lipid bilayer, including its composition and biophysical properties, may play a critical role in "pre-organizing" ligand molecules in an optimal orientation and conformation to facilitate receptor binding. Despite its clear involvement in molecular recognition processes, the critical role of the membrane in binding ligands to lipid-exposed transmembrane binding sites remains poorly understood and warrants comprehensive investigation. Understanding the mechanistic basis of the structure-membrane interaction relationship of drugs will not only provide useful insights about receptor binding kinetics but will also enhance our ability to take advantage of the apparent membrane contributions when designing drugs that target transmembrane proteins with improved efficacy and safety. In this minireview, we summarize recent structural and computational studies on membrane contributions to binding processes, elucidating both lipid pathways of ligand access and binding mechanisms for several orthosteric and allosteric ligands of class A and class B GPCRs.
The knowledge of drug concentrations in bilayer headgroups, core, and at the interface between them is a prerequisite for quantitative modeling of drug interactions with many membrane-bound transporters, metabolizing enzymes and receptors, which have the binding sites located in the bilayer. This knowledge also helps understand the rates of trans-bilayer transport because balanced interactions of drugs with the bilayer strata lead to high rates, while excessive affinities for any stratum cause a slowdown. Experimental determination of bilayer location is so tedious and costly that the data are only available for some fifty compounds. To extrapolate these valuable results to more compounds at a higher throughput, surrogate phases have been used to obtain correlates of the drug affinities for individual strata. We introduced a novel system, consisting of a diacetyl phosphatidylcholine (DAcPC) solution with the water content of the fluid bilayer as the headgroup surrogate and n-hexadecane (C16) representing the core. The C16/DAcPC partition coefficients were measured for 113 selected compounds, containing structural fragments that are frequently occurring in approved drugs. The data were deconvoluted into the ClogP-based fragment solvation characteristics and processed using a solvatochromic correlation. Increased H-bond donor ability and excess molar refractivity of compounds promote solvation in the DAcPC phase as compared to bulk water, contrary to H-bond acceptor ability, dipolarity/polarizability, and volume. The results show that aromates have more balanced distribution in bilayer strata, and thus faster trans-bilayer transport, than similar alkanes. This observation is in accordance with the frequent occurrence of aromatic rings in approved drugs and with the role of rigidity of drug molecules in promoting intestinal absorption. Bilayer locations, predicted using the C16/DAcPC system, are in excellent agreement with available experimental data, in contrast to other surrogate systems.
Aims The objective of this study was to evaluate the antistaphylococcal effect and elucidate the mechanism of action of orange essential oil against antibiotic resistant Staphylococcus aureus strains. Methods and Results Inhibitory effect of commercial orange essential oil (EO) against six S. aureus strains was tested by disc diffusion and agar dilution methods. The mechanism of EO action on MRSA was analyzed by transcriptional profiling. Morphological changes of EO treated S. aureus were examined by transmission electron microscopy. Results showed that 0.1% of cold pressed terpeneless Valencia orange oil (CPV) induced the cell wall stress stimulon consistent with inhibition of cell wall synthesis. Transmission electron microscopic observation revealed cell lysis and suggested a cell wall-lysis related mechanism of CPV. Conclusions CPV inhibits the growth of S. aureus, causes gene expression changes consistent with inhibition of cell wall synthesis and triggers cell lysis. Significance and Impact of the Study Multiple antibiotics resistance is becoming a serious problem in the management of S. aureus infections. In this study the altered expression of cell wall associated genes and subsequent cell lysis in MRSA caused by CPV suggests that it may be a potential antimicrobial agent to control antibiotic resistant S. aureus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.