Many experiments have been conducted to study the hydrodynamic characteristics of column reactors and loop reactors. In this present work, a novel combined loop airlift fluidized bed reactor was developed to study the effect of superficial gas and liquid velocities, particle diameter, fluid properties on gas holdup by using Newtonian and non-Newtonian liquids. Compressed air was used as gas phase. Water, 5% n-butanol, various concentrations of glycerol (60 and 80%) were used as Newtonian liquids, and different concentrations of carboxy methyl cellulose aqueous solutions (0.25, 0.6 and 1.0%) were used as non-Newtonian liquids. Different sizes of spheres, Bearl saddles and Raschig rings were used as solid phases. From the experimental results, it was found that the increase in superficial gas velocity increases the gas holdup, but it decreases with increase in superficial liquid velocity and viscosity of liquids. Based on the experimental results a correlation was developed to predict the gas hold-up for Newtonian and non-Newtonian liquids for a wide range of operating conditions at a homogeneous flow regime where the superficial gas velocity is approximately less than 5 cm/s.
The effect of superficial gas and liquid velocities and properties of solids on the minimum fluidization velocity and riser liquid holdup of a three-phase external loop air lift fluidized bed reactor was characterized using Newtonian and non-Newtonian systems. Water, 65% and 85% of glycerol and n-Butanol were used as Newtonian liquids and different concentrations of carboxymethyl cellulose (i.e. 0.2%, 0.5% and 1% CMC) were used as non-Newtonian liquids. Spherical glass beads, bearl saddles and rasching rings of different sizes were used as solid phases. The phase flow rates and properties of solid particles had significant effects on the hydrodynamic characteristics of the external loop air lift fluidized bed reactor, such as minimum fluidization velocity and riser liquid holdup. Unified correlations have been developed to estimate the minimum fluidization velocity and riser liquid holdup as a function of superficial phase velocities, properties of solid particles and physical properties of both Newtonian and non-Newtonian liquid systems. The predicting ability of the correlations were tested with the experimental data and found to be a good fit with an absolute average relative deviation (AARD) of ± 6.5 % and ± 7.8 % for minimum fluidization velocity and riser liquid holdup, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.