In arid and semi-arid areas, timely and effective monitoring and mapping of salt-affected areas is essential to prevent land degradation and to achieve sustainable soil management. The main objective of this study is to make full use of synthetic aperture radar (SAR) polarization technology to improve soil salinity mapping in the Keriya Oasis, Xinjiang, China. In this study, 25 polarization features are extracted from ALOS PALSAR-2 images, of which four features are selected. In addition, three soil salinity inversion models, named the RSDI1, RSDI2, and RSDI3, are proposed. The analysis and comparison results of inversion accuracy show that the overall correlation values of the RSDI1, RSDI2, and RSDI3 models are 0.63, 0.61, and 0.62, respectively. This result indicates that the radar feature space models have the potential to extract information on soil salinization in the Keriya Oasis.
Currently, soil salinization is one of the main forms of land degradation and desertification. Soil salinization not only seriously restricts the development of agriculture and the economy, but also poses a threat to the ecological environment. The main purpose of this study is to map soil salinity in Keriya Oasis, northwestern China using the PALSAR-2 fully polarized synthetic aperture radar (PolSAR) L-band data and Landsat8-OLI (OLI) optical data combined with deep learning (DL) methods. A field survey is conducted, and soil samples are collected from 20 April 2015 to 1 May 2015. To mine the hidden information in the PALSAR-2 data, multiple polarimetric decomposition methods are implemented, and a wide range of polarimetric parameters and synthetic aperture radar discriminators are derived. The radar vegetation index (RVI) is calculated using PALSAR-2 data, while the normalized difference vegetation index (NDVI) and salinity index (SI) are calculated using OLI data. The random forest (RF)-integrated learning algorithm is used to select the optimal feature subset composed of eight polarimetric elements. The RF, support vector machine, and DL methods are used to extract different degrees of salinized soil. The results show that the OLI+PALSAR-2 image classification result of the DL classification was relatively good, having the highest overall accuracy of 91.86% and a kappa coefficient of 0.90. This method is helpful to understand and monitor the spatial distribution of soil salinity more effectively to achieve sustainable agricultural development and ecological stability.
Soil salinity has been a major factor affecting agricultural production in the Keriya Oasis. It has a destructive effect on soil fertility and could destroy the soil structure of local land. Therefore, the timely monitoring of salt-affected areas is crucial to prevent land degradation and sustainable soil management. In this study, a typical salinized area in the Keriya Oasis was selected as a study area. Using Landsat 8 OLI optical data and ALOS PALSAR-2 SAR data, the optical remote sensing indexes NDVI, SAVI, NDSI, SI, were combined with the optimal radar polarized target decomposition feature component (VanZyl_vol_g) on the basis of feature space theory in order to construct an optical-radar two-dimensional feature space. The optical-radar salinity detection index (ORSDI) model was constructed to inverse the distribution of soil salinity in Keriya Oasis. The prediction ability of the ORSDI model was validated by a test on 40 measured salinity values. The test results show that the ORSDI model is highly correlated with soil surface salinity. The index ORSDI3 (R2 = 0.656) shows the highest correlation, and it is followed by indexes ORSDI1 (R2 = 0.642), ORSDI4 (R2 = 0.628), and ORSDI2 (R2 = 0.631). The results demonstrated the potential of the ORSDI model in the inversion of soil salinization in arid and semi-arid areas.
Soil salinization is one of the major problems affecting arid regions, restricting the sustainable development of agriculture and ecological protection in the Kriya Oasis in Xinjiang, China. This study aims to capture the distribution of soil salinity with polarimetric parameters and various classification methods based on the Advanced Land Observing Satellite-2(ALOS-2) with the Phased Array Type L-Band Synthetic Aperture Radar-2 (PALSAR-2) and Landsat-8 OLI (OLI) images of the Keriya Oasis. Eleven polarization target decomposition methods were employed to extract the polarimetric scattering features. Furthermore, the features with the highest signal-to-noise ratio value were used and combined with the OLI optimal components to form a comprehensive dataset named OLI + PALSAR2. Next, two machine learning algorithms, Support Vector Machine (SVM) and Random Forest, were applied to classify the surface characteristics. The results showed that better outcomes were achieved with the SVM classifier for OLI + PALSAR2 data, with the overall accuracy, Kappa coefficient, and F1 scores being 91.57%, 0.89, and 0.94, respectively. The results indicate the potential of using PALSAR-2 data coupled with the classification in machine learning to monitor different degrees of soil salinity in the Keriya Oasis.
Soil salinization has been an important environmental problem globally, particularly in oasis areas in arid zones. The advantages of using multi-source data, combining radar and optical remote sensing data, and applying machine learning-based algorithms to these data could be beneficial for addressing the soil salinization problem. The current research on salinity estimation still needs to be deepened. To overcome this shortcoming, this study combines the environmental covariates extracted from the Gaofen-3 (GF-3) radar data, Landsat-8 multispectral data, and digital elevation model (DEM) data to explore the advantages of radar remote sensing in detecting soil salinity. The soil salinity distribution degree in the Keriya Oasis is mapped using a machine-learning-based method, and the advantages of different sensor images in predicting soil salinity are evaluated. Three soil salinity inversion models are constructed using measured electrical conductivity (EC) data, the random forest (RF), gradient boosting tree (GDBT), and extreme gradient boosting (XGBoost) models. Also, five classes of optimal environmental covariates are used. The results show that the best accuracy corresponding to an R of 0.87, a root mean square error (RMSE) of 6.02, and a relative percent deviation (RPD) of 2.77 is achieved by the RF model on the GF-3+Landsat-8 data. Therefore, using multi-source data can fully exploit the advantages of both radar and optical data and has been demonstrated to be a more effective method for mapping soil salinity in the study area. In the importance analysis of independent variables, the salinity index (SI), normalized difference vegetation index (NDVI), and DEM contributed the most to the prediction of soil salinity. In this study, the radar polarization decomposition characteristics are incorporated into the inversion of soil salinity modeling as an environmental covariate, providing an innovative and efficient method for soil salinity estimation in arid areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.