Background
Hepatic ischemia-reperfusion injury (IRI) is considered as an effecting factor for hepatocellular carcinoma (HCC) recurrence. Th17/Treg cells are a pair of essential components in adaptive immune response in liver IRI, and forkhead box O1 (FOXO1) has the properties of maintaining the function and phenotype of immune cells. Herein, we illuminated the correlation and function between Th17/Treg cell balance and FOXO1 in IRI-induced HCC recurrence.
Methods
RNA sequencing was performed on naive CD4+ T cells from normal and IRI model mice to identify relevant transcription factors. Western blotting, qRT-PCR, immunohistochemical staining, and flow cytometry were performed in IRI models to indicate the effect of FOXO1 on the polarization of Th17/Treg cells. Then, transwell assay of HCC cell migration and invasion, clone formation, wound healing assay, and Th17 cells adoptively transfer was utilized to assess the function of Th17 cells in IRI-induced HCC recurrence in vitro and in vivo.
Results
Owning to the application of RNA sequencing, FOXO1 was screened and assumed to perform a significant function in hepatic IRI. The IRI model demonstrated that up-regulation of FOXO1 alleviated IR stress by attenuating inflammatory stress, maintaining microenvironment homeostasis, and reducing the polarization of Th17 cells. Mechanistically, Th17 cells accelerated IRI-induced HCC recurrence by shaping the hepatic pre-metastasis microenvironment, activating the EMT program, promoting cancer stemness and angiogenesis, while the upregulation of FOXO1 can stabilize the liver microenvironment homeostasis and alleviate the negative effects of Th17 cells. Moreover, the adoptive transfer of Th17 cells in vivo revealed its inducing function in IRI-induced HCC recurrence.
Conclusions
These results indicated that FOXO1-Th17/Treg axis exerts a crucial role in IRI-mediated immunologic derangement and HCC recurrence, which could be a promising target for reducing the HCC recurrence after hepatectomy.
Background and Aims: Transplantation of mesenchymal stem cells (MSCs) derived from bone marrow (BM) is an alternative treatment of acute liver failure (ALF) mainly because of the resulting anti-inflammatory activity. It is not known how MSCs regulate local immune responses and liver regeneration. This study explored the effects of MSCs on hepatic macrophages and the Wnt signaling pathway in ALF. Methods: MSCs were isolated from BM aspirates of C57BL/6J mice, and transplanted in mice with ALF induced by D-galactosamine (D-Gal). The proliferation of hepatocytes was assayed by immunohistochemical (IHC) staining of Ki-67 and proliferating cell nuclear antigen (PCNA). The levels of key proteins in the Wnt signaling pathway were assayed by western blotting and cytokines were determined enzyme-linked immunosorbent assays (ELISAs). A macrophage polarization assay characterized the M1/M2 ratio. The potential role of interleukin-4 (IL-4) in the biological activity of MSCs was determined by silencing of IL-4. Results: Transplantation of allogeneic MSCs significantly attenuated D-Gal-induced hepatic inflammation and promoted liver regeneration. MSC transplantation significantly promoted a phenotypic switch from proinflamatory M1 macrophages to anti-inflammatory M2 macrophages, leading to significant Wnt-3a induction and activation of the Wnt signaling pathway in mice with D-Gal-induced ALF. Of the paracrine factors secreted by MSCs (G-CSF, IL-6, IL-1 beta, IL-4, and IL-17A), IL-4 was specifically induced following transplantation in the ALF model mice. The silencing of IL-4 significantly abrogated the phenotypic switch to M2 macrophages and the protective effects of MSCs in both the ALF model mice and a co-culture model in an IL-4 dependent manner. Conclusions: In vivo and in vitro studies showed that MSCs ameliorated ALF through an IL-4-dependent macrophage switch toward the M2 anti-inflammatory phenotype. The findings may have clinical implications in that overexpression of IL-4 may enhance the therapeutic effects of allogeneic MSC transplantation in the treatment of ALF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.