Background.Data on risk factors for influenza-associated hospitalizations in low- and middle-income countries are limited.Methods.We conducted active syndromic surveillance for hospitalized severe acute respiratory illness (SARI) and outpatient influenza-like illness (ILI) in 2 provinces of South Africa during 2012–2015. We compared the characteristics of influenza-positive patients with SARI to those with ILI to identify factors associated with severe disease requiring hospitalization, using unconditional logistic regression.Results.During the study period, influenza virus was detected in 5.9% (110 of 1861) and 15.8% (577 of 3652) of SARI and ILI cases, respectively. On multivariable analysis factors significantly associated with increased risk of influenza-associated SARI hospitalization were as follows: younger and older age (<6 months [adjusted odds ratio {aOR}, 37.6], 6–11 months [aOR, 31.9], 12–23 months [aOR, 22.1], 24–59 months [aOR, 7.1], and ≥65 years [aOR, 40.7] compared with 5–24 years of age), underlying medical conditions (aOR, 4.5), human immunodeficiency virus infection (aOR, 4.3), and Streptococcus pneumoniae colonization density ≥1000 deoxyribonucleic acid copies/mL (aOR, 4.8). Underlying medical conditions in children aged <5 years included asthma (aOR, 22.7), malnutrition (aOR, 2.4), and prematurity (aOR, 4.8); in persons aged ≥5 years, conditions included asthma (aOR, 3.6), diabetes (aOR, 7.1), chronic lung diseases (aOR, 10.7), chronic heart diseases (aOR, 9.6), and obesity (aOR, 21.3). Mine workers (aOR, 13.8) and pregnant women (aOR, 12.5) were also at increased risk for influenza-associated hospitalization.Conclusions.The risk groups identified in this study may benefit most from annual influenza immunization, and children <6 months of age may be protected through vaccination of their mothers during pregnancy.
BackgroundStudies describing the epidemiology of influenza B lineages in South Africa are lacking.MethodsWe conducted a prospective study to describe the circulation of influenza B/Victoria and B/Yamagata lineages among patients of all ages enrolled in South Africa through three respiratory illness surveillance systems between 2005 and 2014: (i) the Viral Watch (VW) program enrolled outpatients with influenza-like illness (ILI) from private healthcare facilities during 2005–2014; (ii) the influenza-like illnesses program enrolled outpatients in public healthcare clinics (ILI/PHC) during 2012–2014; and (iii) the severe acute respiratory illnesses (SARI) program enrolled inpatients from public hospitals during 2009–2014. Influenza B viruses were detected by virus isolation during 2005 to 2009 and by real-time reverse transcription polymerase chain reaction from 2009–2014. Clinical and epidemiological characteristics of patients hospitalized with SARI and infected with different influenza B lineages were also compared using unconditional logistic regression.ResultsInfluenza viruses were detected in 22% (8,706/39,804) of specimens from patients with ILI or SARI during 2005–2014, of which 24% (2,087) were positive for influenza B. Influenza B viruses predominated in all three surveillance systems in 2010. B/Victoria predominated prior to 2011 (except 2008) whereas B/Yamagata predominated thereafter (except 2012). B lineages co-circulated in all seasons, except in 2013 and 2014 for SARI and ILI/PHC surveillance. Among influenza B-positive SARI cases, the detection of influenza B/Yamagata compared to influenza B/Victoria was significantly higher in individuals aged 45–64 years (adjusted odds ratio [aOR]: 4.2; 95% confidence interval [CI]: 1.1–16.5) and ≥65 years (aOR: 12.2; 95% CI: 2.3–64.4) compared to children aged 0–4 years, but was significantly lower in HIV-infected patients (aOR: 0.4; 95% CI: 0.2–0.9).ConclusionB lineages co-circulated in most seasons except in 2013 and 2014. Hospitalized SARI cases display differential susceptibility for the two influenza B lineages, with B/Victoria being more prevalent among children and HIV-infected persons.
The effectiveness of the trivalent seasonal influenza vaccine during the 2014 season in South Africa was assessed using a test-negative case–control study design including 472 cases and 362 controls. Influenza A(H3N2) was the dominant strain circulating. The overall vaccine effectiveness estimate, adjusted for age and underlying conditions, was 43·1% (95% CI: −26·8–74·5). 2014 H3N2 viruses from South Africa were mainly in sublineage 3C.3 with accumulation of amino acid changes that differentiate them from the vaccine strain in 3C.1.
Background We aimed to describe the prevalence of human respiratory syncytial virus (HRSV) and evaluate associations between HRSV subgroups and/or genotypes and epidemiologic characteristics and clinical outcomes in patients hospitalized with severe respiratory illness (SRI). Methods Between January 2012 and December 2015, we enrolled patients of all ages admitted to two South African hospitals with SRI in prospective hospital‐based syndromic surveillance. We collected respiratory specimens and clinical and epidemiological data. Unconditional random effect multivariable logistic regression was used to assess factors associated with HRSV infection. Results HRSV was detected in 11.2% (772/6908) of enrolled patients of which 47.0% (363/772) were under the age of 6 months. There were no differences in clinical outcomes of HRSV subgroup A‐infected patients compared with HRSV subgroup B‐infected patients but among patients aged <5 years, children with HRSV subgroup A were more likely be coinfected with Streptococcus pneumoniae (23/208, 11.0% vs. 2/90, 2.0%; adjusted odds ratio 5.7). No significant associations of HRSV A genotypes NA1 and ON1 with specific clinical outcomes were observed. Conclusions While HRSV subgroup and genotype dominance shifted between seasons, we showed similar genotype diversity as noted worldwide. We found no association between clinical outcomes and HRSV subgroups or genotypes.
Bacillus oleronius strain DSM 9356 isolated from the termite Reticulitermes santonensis was sequenced to gain insights in relation to its closest phylogenetic neighbor Bacillus sporothermodurans. The draft genome of strain DSM 9356 contains 5,083,966 bp with an estimated G + C content of 35%, 4899 protein-coding genes, 116 tRNAs and 18 rRNAs. The RAST annotation assigned these genes into 462 subsystems, with the maximum number of genes associated with amino acids and derivatives metabolism (14.84%), followed by carbohydrates (13.89%) and protein metabolism subsystems (9.10%). The draft genome sequence and annotation has been deposited at NCBI under the accession number MTLA00000000.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.