Mitochondria are organelles that play a vital role in cellular survival by supplying ATP and metabolic substrates via oxidative phosphorylation and the Krebs cycle. Hence, mitochondrial dysfunction contributes to many human diseases, including metabolic syndromes, neurodegenerative diseases, cancer, and aging. Mitochondrial transfer between cells has been shown to occur naturally, and mitochondrial transplantation is beneficial for treating mitochondrial dysfunction. In this study, the migration of mitochondria was tracked in vitro and in vivo using mitochondria conjugated with green fluorescent protein (MTGFP). When MTGFP were used in a coculture model, they were selectively internalized into lung fibroblasts, and this selectivity depended on the mitochondrial functional states of the receiving fibroblasts. Compared with MTGFP injected intravenously into normal mice, MTGFP injected into bleomycin-induced idiopathic pulmonary fibrosis model mice localized more abundantly in the lung tissue, indicating that mitochondrial homing to injured tissue occurred. This study shows for the first time that exogenous mitochondria are preferentially trafficked to cells and tissues in which mitochondria are damaged, which has implications for the delivery of therapeutic agents to injured or diseased sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.