It is generally acknowledged that humans display highly variable sensitivity to pain, including variable responses to identical injuries or pathologies. The possible contribution of genetic factors has, however, been largely overlooked. An emerging rodent literature documents the importance of genotype in mediating basal nociceptive sensitivity, in establishing a predisposition to neuropathic pain following neural injury, and in determining sensitivity to pharmacological agents and endogenous antinociception. One clear finding from these studies is that the effect of genotype is at least partially specific to the nociceptive assay being considered. In this report we begin to systematically describe and characterize genetic variability of nociception in a mammalian species, Mus musculus. We tested 11 readily-available inbred mouse strains (129/J, A/J, AKR/J, BALB/cJ, C3H/HeJ, C57BL/6J, C58/J, CBA/J, DBA/2J, RIIIS/J and SM/J) using 12 common measures of nociception. These included assays for thermal nociception (hot plate, Hargreaves' test, tail withdrawal), mechanical nociception (von Frey filaments), chemical nociception (abdominal constriction, carrageenan, formalin), and neuropathic pain (autotomy, Chung model peripheral nerve injury). We demonstrate the existence of clear strain differences in each assay, with 1.2 to 54-fold ranges of sensitivity. All nociceptive assays display moderate-to-high heritability (h2 = 0.30-0.76) and mediation by a limited number of apparent genetic loci. Data comparing inbred strains have considerable utility as a tool for understanding the genetics of nociception, and a particular relevance to transgenic studies.
Clinical pain syndromes, and experimental assays of nociception, are differentially affected by manipulations such as drug administration and exposure to environmental stress. This suggests that there are different 'types' of pain. We exploited genetic differences among inbred strains of mice in an attempt to define these primary 'types'; that is, to identify the fundamental parameters of pain processing. Eleven randomly-chosen inbred mouse strains were tested for their basal sensitivity on 12 common measures of nociception. These measures provided for a range of different nociceptive dimensions including noxious stimulus modality, location, duration and etiology, among others. Since individual members of inbred strains are identical at all genetic loci, the observation of correlated strain means in any given pair of nociceptive assays is an index of genetic correlation between these assays, and hence an indication of common physiological mediation. Obtained correlation matrices were subjected to multivariate analyses to identify constellations of nociceptive assays with common genetic mediation. This analysis revealed three major clusters of nociception: (1) baseline thermal nociception, (2) spontaneously-emitted responses to chemical stimuli, and (3) baseline mechanical sensitivity and cutaneous hypersensitivity. Many other nociceptive parameters that might a priori have been considered closely related proved to be genetically divergent.
Intradermal injection of capsaicin induces primary hyperalgesia at the injection site and secondary hyperalgesia in the surrounding undamaged skin. The secondary hyperalgesia is thought to be due to central sensitization of the dorsal horn neurons while primary hyperalgesia is caused by sensitization of nociceptors in the damaged skin. In this study, we asked if additional non-noxious afferent input from the undamaged skin influences the already developed secondary hyperalgesia, which follows an intradermal injection of capsaicin. Capsaicin dissolved in olive oil was injected into the middle of the hind paw of male Sprague-Dawley rats (250-300 g) under gaseous anesthesia. This produced a decrease in the mechanical threshold at the base of the toes for hind limb withdrawals lasting for 1-2h, thus showing a short-lasting (hours) secondary hyperalgesia. When the capsaicin injection was immediately followed by repeated non-noxious mechanical stimuli or weak electrical stimuli (A fiber strength) applied to the area of secondary hyperalgesia (toes) for 30 min, the reduction of the mechanical threshold lasted longer than 24h. These results suggest that non-noxious A fiber afferent input can powerfully modulate central sensitization in the spinal dorsal horn, causing the duration of the secondary hyperalgesia to be greatly extended.
Mechanical sensitivity is commonly affected in chronic pain and other neurological disorders. To discover mechanisms of individual differences in punctate mechanosensation, we performed quantitative trait locus (QTL) mapping of the response to von Frey monofilament stimulation in BXD recombinant inbred (BXD) mice. Significant loci were detected on mouse chromosome (Chr) 5 and 15, indicating the location of underlying polymorphisms that cause heritable variation in von Frey response. Convergent evidence from public gene expression data implicates candidate genes within the loci: von Frey thresholds were strongly correlated with baseline expression of Cacna2d1, Ift27 and Csnk1e in multiple brain regions of BXD strains. Systemic gabapentin and PF-670462, which target the protein products of Cacna2d1 and Csnk1e, respectively, significantly increased von Frey thresholds in a genotype-dependent manner in progenitors and BXD strains. Real-time polymerase chain reaction confirmed differential expression of Cacna2d1 and Csnk1e in multiple brain regions in progenitors and showed differential expression of Cacna2d1 and Csnk1e in the dorsal root ganglia of the progenitors and BXD strains grouped by QTL genotype. Thus, linkage mapping, transcript covariance and pharmacological testing suggest that genetic variation affecting Cacna2d1 and Csnk1e may contribute to individual differences in von Frey filament response. This study implicates Cacna2d1 and Ift27 in basal mechanosensation in line with their previously suspected role in mechanical hypersensitivity. Csnk1e is implicated for von Frey response for the first time. Further investigation is warranted to identify the specific polymorphisms involved and assess the relevance of these findings to clinical conditions of disturbed mechanosensation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.