Numerous plants have been documented to contain phenolic compounds. Thymol is one among these phenolic compounds that possess a repertoire of pharmacological activities, including anti-inflammatory, anticancer, antioxidant, antibacterial, and antimicrobial effects. Despite of the plethora of affects elicited by thymol, its activity profile on gastric cancer cells is not explored. In this study, we discovered that thymol exerts anticancer effects by suppressing cell growth, inducing apoptosis, producing intracellular reactive oxygen species, depolarizing mitochondrial membrane potential, and activating the proapoptotic mitochondrial proteins Bax, cysteine aspartases (caspases), and poly ADP ribose polymerase in human gastric AGS cells. The outcomes of this study displayed that thymol, via an intrinsic mitochondrial pathway, was responsible for inducing apoptosis in gastric AGS cells. Hence, thymol might serve as a tentative agent in the future to treat cancer.
Cel5 from marine Hahella chejuensis is composed of glycoside hydrolase family-5 (GH5) catalytic domain (CD) and two carbohydrate binding modules (CBM6-2). The enzyme was expressed in Escherichia coli and purified to homogeneity. The optimum endoglucanase and xylanase activities of recombinant Cel5 were observed at 65 °C, pH 6.5 and 55 °C, pH 5.5, respectively. It exhibited K m of 1.8 and 7.1 mg/ml for carboxymethyl cellulose and birchwood xylan, respectively. The addition of Ca(2+) greatly improved thermostability and endoglucanase activity of Cel5. The Cel5 retained 90 % of its endoglucanase activity after 24 h incubation in presence of 5 M concentration of NaCl. Recombinant Cel5 showed production of cellobiose after hydrolysis of cellulosic substrates (soluble/insoluble) and methylglucuronic acid substituted xylooligosaccharides after hydrolysis of glucuronoxylans by endo-wise cleavage. These results indicated that Cel5 as bifunctional enzyme having both processive endoglucanase and xylanase activities. The multidomain structure of Cel5 is clearly distinguished from the GH5 bifunctional glycoside hydrolases characterized to date, which are single domain enzymes. Sequence analysis and homology modeling suggested presence of two conserved binding sites with different substrate specificities in CBM6-2 and a single catalytic site in CD. Residues Glu132 and Glu219 were identified as key catalytic amino acids by sequence alignment and further verified by using site directed mutagenesis. CBM6-2 plays vital role in catalytic activity and thermostability of Cel5. The bifunctional activities and multiple substrate specificities of Cel5 can be utilized for efficient hydrolysis of cellulose and hemicellulose into soluble sugars.
BackgroundRecently, we reported cytoskeleton-associated protein2 (CKAP2) as a possible new prognostic breast cancer marker. However, it has not yet been applied in clinic. Therefore, clinical significance of CKAP2 was evaluated in comparison with that of Ki-67 in a cohort of breast cancer patients, and the expression difference was analyzed in cell cycle-arrested cancer and fibroblast cells.MethodsA total of 579 early breast cancer patients who underwent surgery at the National Cancer Center Hospital in Korea between 2001 and 2005 were accrued. CKAP2-positive cell count (CPCC) and Ki-67 labeling index (Ki-67LI) were evaluated by immunohistochemcal staining. The immunocytochemical staining patterns of CKAP2 and Ki-67 were analyzed in HeLa and human fibroblast cells after synchronization by double thymidine block.ResultsAlthough there was a significant correlation (R = 0.754, P < 0.001) between CPCC and Ki-67LI, only CPCC was correlated with DFS in overall population (HR, 2.029; 95% CI, 1.012–4.068; P = 0.046) and HER2-negative luminal subgroup (HR, 3.984; 95% CI, 1.350–11.762; P = 0.012) by multivariate analysis. In immunocytochemical staining, more than 50% of serum-starved or non-mitotic cell phase HeLa cells were positive for Ki-67, in comparison to the low CKAP2-positivity, which might explain the prognostic difference between CPCC and Ki-67LI.ConclusionsThe current study showed that CPCC but not Ki-67LI is an independent prognostic indicator in early breast cancer, more specifically in HER2-negative luminal breast cancer. The difference between two markers may be related to the lower background expression of CKAP2 in cancer cells.
The present work describes the protective effects of thymol isolated from Thymus quinquecostatus Celak. against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage through various experiments with Chang liver cells. Thymol significantly protected hepatocytes against t-BHP-induced cell cytotoxicity as demonstrated by increased viability. Furthermore, observation of Hoechst staining, annexin V/PI staining, and expression of Bcl-2 and Bax indicated that thymol inhibited t-BHP-induced Chang cell damage. Further, thymol inhibited the loss of mitochondrial membrane potential in t-BHP-treated Chang cells and prevented oxidative stress-triggered reactive oxygen species (ROS) and lipid peroxidation (malondialdehyde, MDA). Thymol restored the antioxidant capability of hepatocytes including glutathione (GSH) levels which were reduced by t-BHP. These results indicated that thymol prevents oxidative stress-induced damage to liver cells through suppression of ROS and MDA levels and increase of GSH level.
FAD-dependent glucose dehydrogenase (FAD-GDH) of Burkholderia cepacia was successfully expressed in Escherichia coli and subsequently purified in order to use it as an anode catalyst for enzyme fuel cells. The purified enzyme has a low Km value (high affinity) towards glucose, which is 463.8 μM, up to 2-fold exponential range lower compared to glucose oxidase. The heterogeneous electron transfer coefficient (Ks) of FAD-GDH-menadione on a glassy carbon electrode was 10.73 s(-1), which is 3-fold higher than that of GOX-menadione, 3.68 s(-1). FAD-GDH was able to maintain its native glucose affinity during immobilization in the carbon nanotube and operation of enzyme fuel cells. FAD-GDH-menadione showed 3-fold higher power density, 799.4 ± 51.44 μW cm(-2), than the GOX-menadione system, 308.03 ± 17.93 μW cm(-2), under low glucose concentration, 5 mM, which is the concentration in normal physiological fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.