In recent years, the importance of catching humans’ emotions grows larger as the artificial intelligence (AI) field is being developed. Facial expression recognition (FER) is a part of understanding the emotion of humans through facial expressions. We proposed a robust multi-depth network that can efficiently classify the facial expression through feeding various and reinforced features. We designed the inputs for the multi-depth network as minimum overlapped frames so as to provide more spatio-temporal information to the designed multi-depth network. To utilize a structure of a multi-depth network, a multirate-based 3D convolutional neural network (CNN) based on a multirate signal processing scheme was suggested. In addition, we made the input images to be normalized adaptively based on the intensity of the given image and reinforced the output features from all depth networks by the self-attention module. Then, we concatenated the reinforced features and classified the expression by a joint fusion classifier. Through the proposed algorithm, for the CK+ database, the result of the proposed scheme showed a comparable accuracy of 96.23%. For the MMI and the GEMEP-FERA databases, it outperformed other state-of-the-art models with accuracies of 96.69% and 99.79%. For the AFEW database, which is known as one in a very wild environment, the proposed algorithm achieved an accuracy of 31.02%.
Deep Learning has become the most important technology in the field of artificial intelligence machine learning, with its high performance overwhelming existing methods in various applications. In this paper, an interactive window service based on object recognition technology is proposed. The main goal is to implement an object recognition technology using this deep learning technology to remove the existing eye tracking technology, which requires users to wear eye tracking devices themselves, and to implement an eye tracking technology that uses only usual cameras to track users' eye. We design an interactive system based on efficient eye detection and pupil tracking method that can verify the user's eye movement. To estimate the view-direction of user's eye, we initialize to make the reference (origin) coordinate. Then the view direction is estimated from the extracted eye pupils from the origin coordinate. Also, we propose a blink detection technique based on the eye apply ratio (EAR). With the extracted view direction and eye action, we provide some augmented information of interest without the existing complex and expensive eye-tracking systems with various service topics and situations. For verification, the user guiding service is implemented as a prototype model with the school map to inform the location information of the desired location or building.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.