The recently engineered reversal of the β-oxidation cycle has been proposed as a potential platform for the efficient synthesis of longer chain (C ≥ 4) fuels and chemicals. Here, we demonstrate the utility of this platform for the synthesis of medium-chain length (C6-C10) products through the manipulation of key components of the pathway. Deletion of endogenous thioesterases provided a clean background in which the expression of various thiolase and termination components, along with required core enzymes, resulted in the ability to alter the chain length distribution and functionality of target products. This approach enabled the synthesis of medium-chain length carboxylic acids and primary alcohols from glycerol, a low-value feedstock. The use of BktB as the thiolase component with thioesterase TesA' as the termination enzyme enabled the synthesis of about 1.3 g/L C6-C10 saturated carboxylic acids. Tailoring of product formation to primary alcohol synthesis was achieved with the use of various acyl-CoA reductases. The combination of AtoB and FadA as the thiolase components with the alcohol-forming acyl-CoA reductase Maqu2507 from M. aquaeolei resulted in the synthesis of nearly 0.3 g/L C6-C10 alcohols. These results further demonstrate the versatile nature of a β-oxidation reversal, and highlight several key aspects and control points that can be further manipulated to fine-tune the synthesis of various fuels and chemicals.
Concerns over sustained availability of fossil resources along with environmental impact of their use have stimulated the development of alternative methods for fuel and chemical production from renewable resources. In this work, we present a new approach to produce α,β-unsaturated carboxylic acids (α,β-UCAs) using an engineered reversal of the β-oxidation (r-BOX) cycle. To increase the availability of both acyl-CoAs and enoyl-CoAs for α,β-UCA production, we use an engineered Escherichia coli strain devoid of mixed-acid fermentation pathways and known thioesterases. Core genes for r-BOX such as thiolase, hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and enoyl-CoA reductase were chromosomally overexpressed under the control of a cumate inducible phage promoter. Native E. coli thioesterase YdiI was used as the cycle-terminating enzyme, as it was found to have not only the ability to convert trans-enoyl-CoAs to the corresponding α,β-UCAs, but also a very low catalytic efficiency on acetyl-CoA, the primer and extender unit for the r-BOX pathway. Coupling of r-BOX with YdiI led to crotonic acid production at titers reaching 1.5g/L in flask cultures and 3.2g/L in a controlled bioreactor. The engineered r-BOX pathway was also used to achieve for the first time the production of 2-hexenoic acid, 2-octenoic acid, and 2-decenoic acid at a final titer of 0.2g/L. The superior nature of the engineered pathway was further validated through the use of in silico metabolic flux analysis, which showed the ability of r-BOX to support growth-coupled production of α,β-UCAs with a higher ATP efficiency than the widely used fatty acid biosynthesis pathway. Taken together, our findings suggest that r-BOX could be an ideal platform to implement the biological production of α,β-UCAs.
We recently used a synthetic/bottom-up approach to establish the identity of the four enzymes composing an engineered functional reversal of the -oxidation cycle for fuel and chemical production in Escherichia coli (J. M. Clomburg, J. E. Vick, M. D. Blankschien, M. Rodriguez-Moya, and R. Gonzalez, ACS Synth Biol 1:541-554, 2012, http://dx.doi.org/10.1021/sb3000782). While native enzymes that catalyze the first three steps of the pathway were identified, the identity of the native enzyme(s) acting as the trans-enoyl coenzyme A (CoA) reductase(s) remained unknown, limiting the amount of product that could be synthesized (e.g., 0.34 g/liter butyrate) and requiring the overexpression of a foreign enzyme (the Euglena gracilis trans-enoyl-CoA reductase [EgTER]) to achieve high titers (e.g., 3.4 g/liter butyrate). Here, we examine several native E. coli enzymes hypothesized to catalyze the reduction of enoyl-CoAs to acyl-CoAs. Our results indicate that FabI, the native enoyl-acyl carrier protein (enoyl-ACP) reductase (ENR) from type II fatty acid biosynthesis, possesses sufficient NADH-dependent TER activity to support the efficient operation of a -oxidation reversal. Overexpression of FabI proved as effective as EgTER for the production of butyrate and longer-chain carboxylic acids. Given the essential nature of fabI, we investigated whether bacterial ENRs from other families were able to complement a fabI deletion without promiscuous reduction of crotonyl-CoA. These characteristics from Bacillus subtilis FabL enabled ⌬fabI complementation experiments that conclusively established that FabI encodes a native enoyl-CoA reductase activity that supports the -oxidation reversal in E. coli. R ecent advances in synthetic biology and enzyme and metabolic engineering (1, 2) are allowing the development of an ever-expanding array of microbial hosts for the production of advanced fuels and industrially relevant chemicals (3, 4). Most efforts are now focused on moving past the historically successful biofuels and industrial products, such as ethanol (5), toward "drop-in" fuels and additives that can be incorporated into existing infrastructure (4). The production of such molecules requires the synthesis of higher-chain-length (C Ն 4) products from 1-, 2-or 3-carbon metabolic intermediates and hence pathways that can mediate the formation of carbon-carbon bonds. A variety of native and engineered pathways have been utilized for this purpose, including the clostridial n-butanol pathway (6), isoprenoid biosynthesis (7,8), the ␣-keto-acids pathway (9, 10), and fatty acid biosynthesis (11,12).Among the aforementioned pathways, the bacterial type II fatty acid biosynthesis system (FAB II) (13) is probably the most widely engineered and has been harnessed for the synthesis of many products, including fatty acids (14), fatty acid methyl esters (15), fatty acid ethyl esters (11, 16), fatty alcohols (11), and alkanes (12). At the core of the FAB II system is an elongation cycle that uses discrete enzymes to catalyze each of its four ste...
Decanoic acid is a valuable compound used as precursor for industrial chemicals, pharmaceuticals, and biofuels. Despite efforts to produce it from renewables, only limited achievements have been reported. Here, we report an engineered cell factory able to produce decanoic acid as a major product from glycerol, and abundant and renewable feedstock. We exploit the overlapping chain-length specificity of β-oxidation reversal (r-BOX) and thioesterase enzymes to selectively generate decanoic acid. This was achieved by selecting r-BOX enzymes that support the synthesis of acyl-CoA of up to 10 carbons (thiolase BktB and enoyl-CoA reductase EgTER) and a thioesterase that exhibited high activity toward decanoyl-CoA and longer-chain acyl-CoAs (FadM). Combined chromosomal and episomal expression of r-BOX core enzymes such as enoyl-CoA reductase and thiolase (in the presence of E. coli thioesterase FadM) increased titer and yield of decanoic acid, respectively. The carbon flux toward decanoic acid was substantially increased by the use of an organic overlay, which decreased its intracellular accumulation and presumably increased its concentration gradient across cell membrane, suggesting that decanoic acid transport to the extracellular medium might be a major bottleneck. When cultivated in the presence of a n-dodecane overlay, the final engineered strain produced 2.1 g/L of decanoic acid with a yield of 0.1 g/g glycerol. Collectively, our data suggests that r-BOX can be used as a platform to selectively produce decanoic acid and its derivatives at high yield, titer and productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.