Recently, research activities on the Future Internet are being actively performed in many countries. In Korea, ETRI and four universities focus on implementation of a research testbed on the Future Internet named as 'FiRST(Future Internet Research for Sustainable Testbed)'. In the 'FiRST' project, four universities are performing a sub-project in collaboration named as 'FiRST@PC' that is for a testbed implementation using programmable NetFPGA platform-based OpenFlow switches. Currently, the research on the virtualization of the testbed is being performed that has a purpose of supporting an isolated network resource to individual researcher. In this paper, we have implemented a traffic scheduler for providing QoS to virtualized network slices by using the programmable platform that performs a hardware-based packet processing, and implemented a testbed using that traffic scheduler. We performed a performance evaluation of the traffic scheduler on the testbed. As a result, we show that the hardware-based NetFPGA scheduler can provide reliable and stable QoS to virtualized networks of the Future Internet Testbed.
In tactical environment, tactical wireless networks are generally comprised of Tactical MANETs(T-MANETs) or Tactical WMNs(T-WMNs). The most important services in tactical network are voice and low rate data such as command control and situation awareness. These data should be forwarded via multi-hop in tactical wireless networks. Urgent and mission-critical data should be protected in this environment, so QoS(Quality of Service) must be guaranteed for specific type of traffic for satisfying the requirement of a user. In IEEE 802.11s, TDMA-based MAC protocol, MCCA(MCF Controlled Channel Access), has a function of resource reservation. But 802.11s protocol can not guarantee the end-to-end QoS, because it only supports reservation with neighbors. In this paper, we propose the routing protocol, R-HWMP(Reservation-based HWMP) which has the resource reservation to support the end-to-end QoS. The proposed protocol can reserve the channel slots and find optimal path in T-WMNs. We analyzed the performance of the proposed protocol and showed that end-to-end QoS is guaranteed using NS-2 simulation.
Recently, worldwide research activities on new network architectures and protocols are being actively progressed. Furthermore, research activities on testbed and related technologies for supporting those activities are being actively performed. In domestic study, research on the OpenFlow protocol based future Internet testbed implementation and research on its virtualization for supporting independent research experiments are being performed at the same time. The network virtualization is a technology which maximizes the testbed utilization without interfering each other for the individual research when many researchers share the testbed. In this paper, we implemented a Enhanced FlowVisor by extending basic FlowVisor by adding QoS functions which are admission control and minimum bandwidth guarantee. On the testbed, we performed a real-time video streaming experiment for verifying the performance of the Enhnaced FlowVisor on the OpenFlow protocol based future internet testbed. The result shows that the Enhanced FlowVisor can provide reliable and stable QoS to the individual researches without disturbing each other traffic on virtualized networks of the future Internet testbed.
The goal of the SmartGrid is to maximize energy efficiency by exchanging bi-directional real-time power information with the help of ICT(Information and Communication Technology). In this paper, we propose a "JRS-MS" (Joint Routing and Scheduling for Multi-channel SmartGrid) algorithm that uses numerical modeling methods in IEEE 802.11s based STDMA multi-channel SmartGrid NAN networks. The proposed algorithm controls the amount of data transmission adaptively at the link layer and finds a high data-rate path which has the least interference between traffic flows in multi-channel SmartGrid NAN networks. The proposed algorithm improve transmission performance by enhancing network utilization. By comparing the results of performance analysis between the proposed algorithm and the JRS-SG algorithm [11] in the previous paper, we showed that the JRS-MS algorithm can improve transmission performance by maximally utilizing given network resources when the number of flows are increasing in the multi-hop NAN wireless mesh networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.