Generally, there were no significant differences in recurrence rates according to clinical stage or surgical approach. Given the rate of delayed recurrence, follow-up of >3 years is required. Moreover, surgeons should always consider combined approaches to reduce the chances of recurrence.
Purpose -The paper's aim is to explore a method using light absorption for improving manufacturing of complex, three-dimensional (3D) micro-parts with a previously developed dynamic mask projection microstereolithography (MSL) system. A common issue with stereolithography systems and especially important in MSL is uncontrolled penetration of the ultraviolet light source into the photocrosslinkable resin when fabricating down-facing surfaces. To accurately fabricate complex 3D parts with down-facing surfaces, a chemical light absorber, Tinuvin 327e was mixed in different concentrations into an acrylate-based photocurable resin, and the solutions were tested for cure depths and successful micro-part fabrication. Design/methodology/approach -Tinuvin 327 was selected as the light absorber based on its high absorption characteristics (, 0.4) at 365 nm (the filtered light wavelength used in the MSL system). Four concentrations of Tinuvin 327 in resin were used (0.00, 0.05, 0.10, and 0.15 percent (w/w)), and cure depth experiments were performed. To investigate the effects of different concentrations of Tinuvin 327 on complex 3D microstructure fabrication, several microstructures with overhanging features such as a fan and spring were fabricated. Findings -Results showed that higher concentrations of Tinuvin 327 reduced penetration depths and thus cure depths. For the resin with 0.15 percent (w/w) of the Tinuvin 327, a cure depth of ,30 mm was achieved as compared to ,200 mm without the light absorber. The four resin solutions were used to fabricate complex 3D microstructures, and different concentrations of Tinuvin 327 at a given irradiance and exposure energy were required for successful fabrication depending on the geometry of the micro-part (concentrations of 0.05 and 0.1 percent (w/w) provided the most accurate builds for the fan and spring, respectively). Research limitations/implications -Although two different concentrations of light absorber in solution were required to demonstrate successful fabrication for two different micro-part geometries (a fan and spring), the experiments were performed using a single irradiance and exposure energy. A single solution with the light absorber could have possibly been used to fabricate these micro-parts by varying irradiance and/or exposure energy, although the effects of varying these parameters on geometric accuracy, mechanical strength, overall manufacturing time, and other variables were not explored. Originality/value -This work systematically investigated 3D microstructure fabrication using different concentrations of a light absorber in solution, and demonstrated that different light absorption characteristics were required for different down-facing micro-features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.