Polycrystalline Ca3-xBixCo4O9 samples have been prepared by solid-phase reaction followed by spark plasma sintering process. The thermoelectric properties have been systematically investigated from room temperature to near 1000K. It is found that the change of the carrier concentration leads to the change of resistivity, which is mainly associated with doping induced point defect phonon scattering. The change of the thermal potential mainly comes from the spin entropy. In addition, polycrystalline Ca3-xBixCo4O9 had a maximum figure of merit of 0.30 at 973 K, which was about 50% higher than Ca3Co4O9. It indicated that doping approach can effectively improve the thermoelectric performance of Ca3Co4O9+δ-based material.
We investigated the effects of molecular ordering on the electro-optical characteristics of organic light-emitting diodes (OLEDs) with an emission layer (EML) of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV). The EML was fabricated by a solution process which can make molecules ordered. The performance of the OLED devices with the molecular ordering method was compared to that obtained through fabrication by a conventional spin coating method. The turn-on voltage and the luminance of the conventional OLEDs were 5 V and 34.75 cd/m2, whereas those of the proposed OLEDs were 4.5 V and 120.3 cd/m2, respectively. The underlying mechanism of the higher efficiency with ordered molecules was observed by analyzing the properties of the EML layer using AFM, SE, XRD, and an LCR meter. We confirmed that the electrical properties of the organic thin film can be improved by controlling the molecular ordering of the EML, which plays an important role in the electrical characteristics of the OLED.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.