Hip joint ultrasonographic (US) imaging is the golden standard for developmental dysplasia of the hip (DDH) screening. However, the effectiveness of this technique is subject to interoperator and intraobserver variability. Thus, a multi-detection deep learning artificial intelligence (AI)-based computer-aided diagnosis (CAD) system was developed and evaluated. The deep learning model used a two-stage training process to segment the four key anatomical structures and extract their respective key points. In addition, the check angle of the ilium body balancing level was set to evaluate the system’s cognitive ability. Hence, only images with visible key anatomical points and a check angle within ±5° were used in the analysis. Of the original 921 images, 320 (34.7%) were deemed appropriate for screening by both the system and human observer. Moderate agreement (80.9%) was seen in the check angles of the appropriate group (Cohen’s κ = 0.525). Similarly, there was excellent agreement in the intraclass correlation coefficient (ICC) value between the measurers of the alpha angle (ICC = 0.764) and a good agreement in beta angle (ICC = 0.743). The developed system performed similarly to experienced medical experts; thus, it could further aid the effectiveness and speed of DDH diagnosis.
Malignant melanoma accounts for about 1–3% of all malignancies in the West, especially in the United States. More than 9000 people die each year. In general, it is difficult to characterize a skin lesion from a photograph. In this paper, we propose a deep learning-based computer-aided diagnostic algorithm for the classification of malignant melanoma and benign skin tumors from RGB channel skin images. The proposed deep learning model constitutes a tumor lesion segmentation model and a classification model of malignant melanoma. First, U-Net was used to classify skin lesions in dermoscopy images. We implement an algorithm to classify malignant melanoma and benign tumors using skin lesion images and expert labeling results from convolutional neural networks. The U-Net model achieved a dice similarity coefficient of 81.1% compared to the expert labeling results. The classification accuracy of malignant melanoma reached 80.06%. As a result, the proposed AI algorithm is expected to be utilized as a computer-aided diagnostic algorithm to help early detection of malignant melanoma.
We thank Dr. Sadettin Ciftci for his comment on the key point issues in measuring the alpha and beta angle with Graf method. We appreciated his feedback [...]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.