We consider an analogue de Sitter cosmos in an expanding quasi-two-dimensional Bose-Einstein condensate with dominant dipole-dipole interactions between the atoms or molecules in the ultracold gas. It is demonstrated that a hallmark signature of inflationary cosmology, the scale invariance of the power spectrum of inflaton field correlations, experiences strong modifications when, at the initial stage of expansion, the excitation spectrum displays a roton minimum. Dipolar quantum gases thus furnish a viable laboratory tool to experimentally investigate, with well-defined and controllable initial conditions, whether primordial oscillation spectra deviating from Lorentz invariance at trans-Planckian momenta violate standard predictions of inflationary cosmology.
We study quasi-two-dimensional dipolar Bose-Einstein condensates, in which the Bogoliubov excitation spectrum displays, at sufficiently large gas density, a deep roton minimum due to the spatially anisotropic behavior of the dipolar two-body potential. A rapid quench, performed on the speed of sound of excitations propagating on the condensate background, leads to the dynamical Casimir effect, which can be characterized by measuring the density-density correlation function. It is shown, for both zero and finite initial temperatures, that the continuous-variable bipartite quantum state of the created quasiparticle pairs with opposite momenta, resulting from the quench, displays an enhanced potential for the presence of entanglement (represented by nonseparable and steerable quasiparticle states), when compared to a gas with solely repulsive contact interactions. Steerable quasiparticle pairs contain momenta from close to the roton, and hence quantum correlations significantly increase in the presence of a deep roton minimum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.