We present a novel paper-based flow fractionation system for preconcentration and field-flow separation. In this passive fluidic device, a straight channel is divided into multiple daughter channels, each of which is connected with an expanded region. The hydrodynamic resistance of the straight channel is predominant compared with those of expanded regions, so we can create steady flows through the straight and daughter channels. While the expanded regions absorb a great amount of water via capillarity, the steady flow continues for 10 min without external pumping devices. By controlling the relative hydrodynamic resistances of the daughter channels, we successfully divide the flow with flow rate ratios of up to 30. Combining this bifurcation system with ion concentration polarization (ICP), we develop a continuous-flow preconcentrator on a paper platform, which can preconcentrate a fluorescent dye up to 33-fold. In addition, we construct a field-flow separation system to divide two different dyes depending on their electric polarities. Our flow fractionation systems on a paper-based platform would make a breakthrough for point-of-care diagnostics with specific functions including preconcentration and separation.
We present a combined experimental and theoretical investigation of the dynamics of liquid imbibition through paper. The Washburn equation is widely used to describe the dynamics of capillary flow through paper, but this classical model has limited accuracy, which often makes it difficult to use in developing analytic systems such as paper-based microfluidic devices. We here report that the internal cavity of the cellulose fibres composing paper is significantly responsible for the limited accuracy of the Washburn equation. Our experiments demonstrated that liquid can be absorbed in the internal cavity of the cellulose fibres as well as in the inter-fibre pores formed by the fibre network. We developed a mathematical model for liquid imbibition by considering the flow through the intra-fibre pores based on experimental measurements of the intra-structure of cellulose fibres. The model markedly improves the prediction of the liquid absorption length, compared with the results of the Washburn equation, thus revealing the physics behind the limits of the Washburn equation. This study suggests that the accurate description of capillary imbibition through paper require parameters characterizing the internal pores of the cellulose fibres comprising the paper. Our results not only provide a new insight into porous media flows with different sized pores, but also provide a theoretical background for flow control in paper-based microfluidic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.