Speech emotion recognition is a challenging task, and extensive reliance has been placed on models that use audio features in building well-performing classifiers. In this paper, we propose a novel deep dual recurrent encoder model that utilizes text data and audio signals simultaneously to obtain a better understanding of speech data. As emotional dialogue is composed of sound and spoken content, our model encodes the information from audio and text sequences using dual recurrent neural networks (RNNs) and then combines the information from these sources to predict the emotion class. This architecture analyzes speech data from the signal level to the language level, and it thus utilizes the information within the data more comprehensively than models that focus on audio features. Extensive experiments are conducted to investigate the efficacy and properties of the proposed model. Our proposed model outperforms previous state-of-the-art methods in assigning data to one of four emotion categories (i.e., angry, happy, sad and neutral) when the model is applied to the IEMOCAP dataset, as reflected by accuracies ranging from 68.8% to 71.8%.
In this paper, we are interested in exploiting textual and acoustic data of an utterance for the speech emotion classification task. The baseline approach models the information from audio and text independently using two deep neural networks (DNNs). The outputs from both the DNNs are then fused for classification. As opposed to using knowledge from both the modalities separately, we propose a framework to exploit acoustic information in tandem with lexical data. The proposed framework uses two bi-directional long short-term memory (BLSTM) for obtaining hidden representations of the utterance. Furthermore, we propose an attention mechanism, referred to as the multi-hop, which is trained to automatically infer the correlation between the modalities. The multi-hop attention first computes the relevant segments of the textual data corresponding to the audio signal. The relevant textual data is then applied to attend parts of the audio signal. To evaluate the performance of the proposed system, experiments are performed in the IEMOCAP dataset. Experimental results show that the proposed technique outperforms the state-of-the-art system by 6.5% relative improvement in terms of weighted accuracy.Index Termsspeech emotion recognition, computational paralinguistics, deep learning, natural language processing Fig. 2. Confusion matrix of each model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.