In active sonar systems, the detection of echo from targets can deteriorate due to reverberation. Detection becomes more difficult if targets have low-Doppler frequency and are located near the reverberation band, especially in an environment with low signal-to-reverberation ratio. In this paper, we propose an algorithm for the reverberation suppression of continuous wave signals using non-negative matrix factorization. To extract the target echo signal mixed with reverberations, the bases for the target echo and the reverberation are independently defined, and different constraints are applied for their corresponding estimation. We also derive constraints on temporal continuity and temporal length to estimate bases for the target echo. Experiments using simulated reverberations are performed to evaluate the proposed algorithm, and the results show an enhancement in the signal-to-noise ratio by 6-15 dB, as well as in the detection probability at several signal-to-reverberation ratios. Moreover, an experiment is conducted using reverberation measured from an ocean, and the results show that the proposed algorithm can effectively suppress reverberation and enhance detection performance in practical settings.
Salt stress constitutes a major form of abiotic stress in plants. Histone modification plays an important role in stress tolerance, with particular reference to salt stress resistance. In the current study, we found that HDA15 overexpression confers salt stress resistance to young seedling stages of transgenic plants. Furthermore, salt stress induces HDA15 overexpression. Transcription levels of stress-responsive genes were increased in transgenic plants overexpressing HDA15 (HDA15 OE). NCED3, an abscisic acid (ABA) biosynthetic gene, which is highly upregulated in HDA15 transgenic plants, enhanced the accumulation of ABA, which promotes adaptation to salt stress. ABA homeostasis in HDA15 OE plants is maintained by the induction of CYP707As, which optimize endogenous ABA levels. Lastly, we found that the double-mutant HDA15 OE/hy5 ko plants are sensitive to salt stress, indicating that interaction between HDA15 and ELONGATED HYPOCOTYL 5 (HY5) is crucial to salt stress tolerance shown by HDA15 OE plants. Thus, our findings indicate that HDA15 is crucial to salt stress tolerance in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.