Numerous physiological functions are controlled by redox-responsive signaling pathways. Disruption of redox balance by oxidative stress is recognized as a major cause of many pathological conditions, including aging, highlighting the importance of investigating how antioxidants maintain redox homeostasis. AMP-activated protein kinase (AMPK) is activated in response to cellular conditions that accompany energy depletion and plays a central role in the regulation of energy homeostasis, tumorigenesis and longevity. Recently, several antioxidants have been reported to activate AMPK, although the mechanisms by which AMPK acts to adjust the levels of cellular reactive oxygen species are not fully characterized. In the present study, we investigated the role of AMPK in mediating resveratrolinduced antioxidant effects and the molecular mechanisms underlying its actions. We demonstrate that AMPK activity plays an indispensable role in the operation of the ROS defense system by inducing the expression of the antioxidant enzymes, manganese superoxide dismutase and catalase, in response to resveratrol or the AMPK agonist 5-aminoimidazole-4-carboxamide-1-b-D-ribonucleotide. In addition, we identified the mechanism involved in the antioxidant function of AMPK, demonstrating that AMPK directly phosphorylates human FoxO1 (forkhead box O1) at Thr 649 in vitro and increases FoxO1-dependent transcription of manganese superoxide dismutase and catalase. Mutagenesis studies showed that this AMPK-mediated phosphorylation of FoxO1 is critical for FoxO1 stability and nuclear localization, establishing the molecular basis for the induction of FoxO1 transcriptional activity. Our results reveal a novel FoxO1-dependent mechanism by which AMPK controls the expression of antioxidant enzymes and suggest that AMPK has an important role in maintaining redox homeostasis.Abbreviations ACC, acetyl-CoA carboxylase; AICAR, 5-aminoimidazole-4-carboxamide-1-b-D-ribonucleotide; AMPK, AMP-activated protein kinase; BS-mut, binding site mutation; CaMKKb, calcium/calmodulin-dependent protein kinase kinase b; CuZnSOD, copper zinc superoxide dismutase; FACS, fluorescence-activated cell sorting; FHRE, forkhead response element; FOXO, forkhead box O; GFP, green fluorescent protein; GPx, glutathione peroxidase; GST, glutathione S-transferase; HRP, horseradish peroxidase; MnSOD, manganese superoxide dismutase; ROS, reactive oxygen species; WT, wild-type.
Muscle differentiation is a crucial process controlling muscle development and homeostasis. Mitochondrial reactive oxygen species (mtROS) rapidly increase and function as critical cell signaling intermediates during the muscle differentiation. However, it has not yet been elucidated how they control myogenic signaling. Autophagy, a lysosome-mediated degradation pathway, is importantly recognized as intracellular remodeling mechanism of cellular organelles during muscle differentiation. Here, we demonstrated that the mtROS stimulated phosphatidylinositol 3 kinase/AKT/mammalian target of rapamycin (mTOR) cascade, and the activated mTORC1 subsequently induced autophagic signaling via phosphorylation of uncoordinated-51-like kinase 1 (ULK1) at serine 317 and upregulation of Atg proteins to prompt muscle differentiation. Treatment with MitoQ or rapamycin impaired both phosphorylation of ULK1 and expression of Atg proteins. Therefore, we propose a novel regulatory paradigm in which mtROS are required to initiate autophagic reconstruction of cellular organization through mTOR activation in muscle differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.