We propose a magnetometer system fitted on an unmanned aerial vehicle (UAV, or drone) and a data-processing method for detecting metal antipersonnel landmines (M16) in the demilitarized zone (DMZ) in Korea, which is an undeveloped natural environment. The performance of the laser altimeter was improved so that the drone could fly at a low and stable altitude, even in a natural environment with dust and bushes, and a magnetometer was installed on a pendulum to minimize the effects of magnetic noise and vibration from the drone. At a flight altitude of 1 m, the criterion for M16 is 5 nT. Simple low-pass filtering eliminates magnetic swing noise due to pendulum motion, and the moving average method eliminates changes related to the heading of the magnetometer. Magnetic exploration was conducted in an actual mine-removal area near the DMZ in Korea, with nine magnetic anomalies of more than 5 nT detected and a variety of metallic substances found within a 1-m radius of each detection site. The proposed UAV-based landmine detection system is expected to reduce risk to detection personnel and shorten the landmine-detection period by providing accurate scientific information about the detection area prior to military landmine-detection efforts.
The seawater temperature and wind dependences and diurnal variation of the ambient noise at the snapping shrimp colony in shallow water of the southern sea of Korea were investigated. The ambient noise levels are significantly affected by the snapping shrimp sound, when the bottom seawater temperature increases and the wind speed decreases. However, they are not exceptively almost affected by the snapping shrimp sound when the wind speed decreases at low seawater temperatures (<10 °C). In diurnal variation, the ambient noise levels are also significantly affected by the snapping shrimp sound in the morning and night time zones. This study shows that the activity of the snapping shrimp affecting the variation in ambient noise level in shallow water can be related to the wind speed as well as the seawater temperature. This study also shows that the snapping shrimp in diurnal activity can be more active in the morning and night time zones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.