We evaluated the inhibitory effects of components from the root of Glycyrrhiza uralensis (G. uralensis) on aldose reductase (AR) and sorbitol formation in rat lenses with high levels of glucose as part of our ongoing search of natural sources for therapeutic and preventive agents for diabetic complications. In order to identify the bioactive components of G. uralensis, 5 prenylated flavonoids (semilicoisoflavone B, 7-O-methylluteone, dehydroglyasperin C, dehydroglyasperin D, and isoangustone A), three flavonoids (liquiritigenin, isoliquiritigenin, and licochalcone A), and two triterpenoids (glycyrrhizin and glycyrrhetinic acid) were isolated; their chemical structures were then elucidated on the basis of spectroscopic evidence and comparison with published data. The anti-diabetic complication activities of 10 G. uralensis-derived components were investigated via inhibitory assays using rat lens AR (rAR) and human recombinant AR (rhAR). From the 10 isolated compounds, semilicoisoflavone B showed the most potent inhibition, with the IC 50 values of rAR and rhAR at 1.8 and 10.6 m mM, respectively. In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/concentration of substrate, semilicoisoflavone B showed noncompetitive inhibition against rhAR. The results clearly indicated that the presence of a g g,g g-dimethylchromene ring is partly responsible for the AR inhibitory activity of isoprenoid-type flavonoids. Further, semilicoisoflavone B inhibited sorbitol formation of rat lens incubated with a high concentration of glucose, indicating that this compound may be effective for preventing osmotic stress in hyperglycemia.
Aldose reductase (AR) inhibitors have considerable therapeutic potential against diabetic complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of the 70% acetone extract obtained from Paulownia coreana seeds, phenylpropanoid glycosides (compounds 1-4) and 5 phenolic coumpounds were isolated (compounds 5-9). Their structures were determined on the basis of spectroscopic analysis and comparison with reported data. All the isolates were subjected to in vitro bioassays to evaluate their inhibitory activities against recombinant human aldose reductase (rhAR) and sorbitol formation in human erythrocytes. Phenylethanoid glycosides showed more effective than the phenolic compounds in inhibiting rhAR. Among the compounds, isocampneoside II (3) was found to significantly inhibit rhAR with an IC 50 value of 9.72 m mM. In kinetic analyses performed using Lineweaver-Burk plots of 1/velocity and 1/concentration of substrate, isocampneoside II (3) showed uncompetitive inhibition against rhAR. Furthermore, it inhibited sorbitol formation in a rat lens incubated with a high concentration of glucose; this finding indicated that isocampneoside II (3) may effectively prevent osmotic stress in hyperglycemia. Thus, the P. coreana-derived phenylethanoid glycoside isocampneoside II (3) may have a potential therapeutics against diabetic complications.
Two isoflavone glycosides and five isoflavone derivatives were successfully isolated and purified from the crude methanol extract of dried rhizomes of the B. chinensis by HSCCC.
This study employed the online HPLC-2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate radical cation (ABTS(+*)) bioassay to rapidly determine antioxidant compounds occurring in the licorice extract of Glycyrrhiza uralensis. The negative peaks of the ABTS(+*) radical scavenging detection system, which indicated the presence of antioxidant activity, were monitored by measuring the decrease in absorbance at 734 nm. The ABTS(+)-based antioxidant activity profile showed that three peaks exhibited antioxidant activity, and then the high-speed counter-current chromatography technique of preparative scale was successfully applied to separate the three peaks I-III in one step from the licorice extract. The high-speed counter-current chromatography was performed using a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (6.5:5.5:6:4, v/v). Yields of the three peaks, dehydroglyasperin C (I, 95.1% purity), dehydroglyasperin D (II, 96.2% purity), and isoangustone A (III, 99.5% purity), obtained were 10.33, 10.43, and 6.7% respectively. Chemical structures of the purified dehydroglyasperin C (I), dehydroglyasperin D (II), and isoangustone A (III) were identified by ESI-MS and (1)H- and (13)C-NMR analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.