Persistent accumulation of DNA damage induced by reactive oxygen species (ROS) is proposed to be a major contributor toward the aging process. Furthermore, an increase in age-associated ROS is strongly correlated with aging in various species, including humans. Here we showed that the enforced expression of the ROS modulator 1 (Romo1) triggered premature senescence by ROS production, and this also contributed toward induction of DNA damage. Romo1-derived ROS was found to originate in the mitochondrial electron transport chain. Romo1 expression gradually increased in proportion to population doublings of IMR-90 human fibroblasts. An increase in ROS production in these cells with high population doubling was blocked by the Romo1 knockdown using Romo1 small interfering RNA. Romo1 knockdown also inhibited the progression of replicative senescence. Based on these results, we suggest that age-related ROS levels increase, and this contributes to replicative senescence, which is directly associated with Romo1 expression.The chromosomal ends of senescent cells are associated with DNA damage-response factors. Telomere shortening triggers a DNA damage checkpoint response, resulting in replicative senescence. Blocking of the DNA damage checkpoint response releases cell cycle arrest in the G 1 phase of the cell (1). One of the important mediators in telomere-dependent senescence is p53, and it plays an important role in DNA damage response as well as regulation of cellular senescence. The other main regulators of senescence are reported as p21 WAF1/CIP1 , p16 INK4A , and retinoblastoma protein, and these have been classified into two major signaling pathways, the p53/p21 WAF1/CIP1 pathway and the p16
Reactive oxygen species (ROS) steady-state levels are required for entry into the S phase of the cell cycle in normal cells, as well as in tumour cells. However, the contribution of mitochondrial ROS to normal cell proliferation has not been well investigated thus far. A previous report showed that Romo1 was responsible for the high ROS levels in tumour cells. Here, we show that endogenous ROS generated by Romo1 are indispensable for cell cycle transition from G1 to S phase in normal WI-38 human lung fibroblasts. The ROS level in these cells was down-regulated by Romo1 knockdown, resulting in cell cycle arrest in the G1 phase. This arrest was associated with an increase in the level of p27(Kip1). These results demonstrate that mitochondrial ROS generated by Romo1 expression is required for normal cell proliferation and it is suggested that Romo1 plays an important role in redox signalling during normal cell proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.