Cigarette smoking is the leading cause of preventable death in a general population and it seems a significant topic in health research. The primary aim of this study determines the significant risk factors and investigates the prediction of 6 months smoking cessation program among women in Korea. In this regard, we examined real-world dataset about a smoking cessation program among the only women from Chungbuk Tobacco Control Center of Chungbuk National University College of Medicine in South Korea which collected from 2015 to 2017. Accordingly, we carried out to compare four machine learning techniques: Logistic regression (LR), Support Vector Machine (SVM), Random Forest (RF) and Naï ve Bayes (NB) in order to predict response for successful or unsuccessful smoking quitters. Totally we analyzed 60 set of features that may affect the association between smoking cessation such as socio-demographic characteristics, smoking status for the age of starting, duration and others by employing a filter-based feature selection method. Respectively, we identified significant 8 factors which associated with smoking cessation. The experimental results demonstrate that NB performs better than other classifiers. Moreover, the performance of prediction models as measured by Accuracy, Precision, Recall, F-measure and ROC area. This finding has gone some way towards enhancing our better understanding of the significant factors contributing to smoking cessation program implementation and accompanying to concern public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.