Load forecasting is a key issue for efficient real-time energy management in smart grids. To control the load using demand side management accurately, load forecasting should be predicted in the short term. With the advent of advanced measuring infrastructure, it is possible to measure energy consumption at sampling rates up to every 5 min and analyze the load profile of small-scale energy groups, such as individual buildings. This paper presents applications of deep learning using feature decomposition for improving the accuracy of load forecasting. The load profile is decomposed into a weekly load profile and then decomposed into intrinsic mode functions by variational mode decomposition to capture periodic features. Then, a long short-term memory network model is trained by three-dimensional input data with three-step regularization. Finally, the prediction results of all intrinsic mode functions are combined with advanced measuring infrastructure measured in the previous steps to determine an aggregated output for load forecasting. The results are validated by applications to real-world data from smart buildings, and the performance of the proposed approach is assessed by comparing the predicted results with those of conventional methods, nonlinear autoregressive networks with exogenous inputs, and long short-term memory network-based feature decomposition.
This paper presents a multiscale phasor measurement unit (PMU) data-compression method based on clustering analysis of wide-area power systems. PMU data collected from wide-area power systems involve local characteristics that are significant risk factors when applying dimensionality-reduction-based data compression. Therefore, density-based spatial clustering of applications with noise (DBSCAN) is proposed for the preconditioning of PMU data, except for bad data and the automatic segmentation of correlated local datasets. Clustered PMU datasets of a local area are then compressed using multiscale principal component analysis (MSPCA). When applying MSPCA, each PMU signal is decomposed into frequency sub-bands using wavelet decomposition, approximation matrix, and detail matrices. The detail matrices in high-frequency sub-bands are compressed by using a PCA-based linear-dimensionality reduction process. The effectiveness of DBSCAN for data compression is verified by application of the proposed technique to the real-world PMU voltage and frequency data. In addition, comparisons are made with existing compression techniques in wide-area power systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.