Toxicity of arsenic compounds depends on the chemical structure as well as the concentration. Thus, separation of the toxic arsenic species should precede the quantification for the accurate toxicity assessment. Ion chromatography inductively coupled plasma mass spectrometry (IC-ICP-MS) has been the most popular method for separation and quantification of toxic arsenic species. However, the method requires complex instrument, elaborate sample preparation, and long analysis time. In this work, toxic inorganic arsenic species in water was separated by the simple solid phase extraction (SPE) using a strong anion-exchange membrane filter, and then the membrane filter was analyzed by femtosecond laser ablation inductively coupled plasma mass spectrometry (fs-LA-ICP-MS). The pH value of the sample was adjusted to 4 using ammonium hydroxide and phosphoric acid for the complete separation of the toxic inorganic arsenic from the other organic arsenics. The linear dynamic range was from 0.5 to 1000 μg/kg, and the correlation coefficient was 0.99989. The recovery efficiency was 96‑106%. The detection limit of the inorganic arsenic was 0.028 μg/kg. Our results indicate that SPE-fs-LA-ICP-MS provides enough analytical performance to analyze the toxic inorganic arsenic in water at the level of parts per trillion using the simple separation method and the rapid laser ablation sampling.
The toxicity and biological activity of arsenic depend on its chemical form. In particular, inorganic arsenics are more toxic than organic ones. Apart from the determination of total arsenics, their accurate speciation is important for toxicity assessment. To separate arsenic species using a cation or an anion separation column, at least 0.5–1.0 mL of sample is required because conventional ion chromatography columns use a sample loop of 100–200 μL. It is thus difficult to analyze samples with small volumes, such as clinical and biological samples. In this study, a method for separating arsenic species using a 5-μL sample loop combined with a capillary ion exchange column has been developed for analyzing small volume of samples. The separated arsenics were determined by inductively coupled plasma mass spectrometry. By oxidizing As(III) to As(V) prior to analysis, the total inorganic arsenics, As(III) and As(V), could be well separated from the organic ones. Linear calibration curves (0.5–50 μg/kg) were obtained for total inorganic arsenics dissolved in water. Sub-picogram-level detection limit was obtained. The analytical capability of this method was successfully validated for certified reference materials, namely water and human urine, with total inorganic arsenic recovery efficiencies of 100% and 121%, respectively. Our method requires less than ~ 10 μL of sample and will be very useful to analyze valuable samples available in limited amounts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.