In today's era of aging society, people want to handle personal health care by themselves in everyday life. In particular, the evolution of medical and IT convergence technology and mobile smart devices has made it possible for people to gather information on their health status anytime and anywhere easily using biometric information acquisition devices. Healthcare information systems can contribute to the improvement of the nation's healthcare quality and the reduction of related cost. However, there are no perfect security models or mechanisms for healthcare service applications, and privacy information can therefore be leaked. In this paper, we examine security requirements related to privacy protection in u-healthcare service and propose an extended RBAC based security model. We propose and design u-healthcare service integration platform (u-HCSIP) applying RBAC security model. The proposed u-HCSIP performs four main functions: storing and exchanging personal health records (PHR), recommending meals and exercise, buying/selling private health information or experience, and managing personal health data using smart devices.
A personal credit evaluation algorithm is proposed by the design of a decision tree with a boosting algorithm, and the classification is carried out. By comparison with the conventional decision tree algorithm, it is shown that the boosting algorithm acts to speed up the processing time. The Classification and Regression Tree (CART) algorithm with the boosting algorithm showed 90.95% accuracy, slightly higher than without boosting, 90.31%. To avoid overfitting of the model on the training set due to unreasonable data set division, we consider cross-validation and illustrate the results with simulation; hypermeters of the model have been applied and the model fitting effect is verified. The proposed decision tree model is fitted optimally with the help of a confusion matrix. In this paper, relevant evaluation indicators are also introduced to evaluate the performance of the proposed model. For the comparison with the conventional methods, accuracy rate, error rate, precision, recall, etc. are also illustrated; we comprehensively evaluate the model performance based on the model accuracy after the 10-fold cross-validation. The results show that the boosting algorithm improves the performance of the model in accuracy and precision when CART is applied, but the model fitting time takes much longer, around 2 min. With the obtained result, it is verified that the performance of the decision tree model is improved under the boosting algorithm. At the same time, we test the performance of the proposed verification model with model fitting, and it could be applied to the prediction model for customers’ decisions on subscription to the fixed deposit business.
PurposeAs the center of the fourth industrial revolution, artificial intelligence (AI) has marked its presence in various disciplines including the education field in the form of AI-powered learning applications. The purpose of this study is to build a research model capturing the relationships among use contexts, user gratification, attitude, learning performance and continuous intention to use an AI-powered English learning application.Design/methodology/approachUsing the use and gratification theory, use contexts and the belief-attitude-intention theory, this paper uses a quantitative approach based on a survey method for data collection and structural equation modeling for analysis. A total of 478 students from an international university in Guangdong, China, participated in the survey after using Liulishuo for two weeks.FindingsThe results showed that perceived use contexts affected all variables associated with gratifications-obtained and gratification-opportunities. With the exception of social integrativeness, all other gratification-based factors significantly affected attitude. The attitude in turn significantly influenced learning performance and continuous use intention.Originality/valueMobile AI-powered learning applications are at the center of research on technology-enhanced learning in the age of media and technology convergence. The study is timely and contributes to the discussion of the roles of use context and gratifications on technology users’ attitudes and behavioral intentions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.