Background Despite the growing demand for antimicrobial peptides (AMPs) for clinical use as an alternative approach against antibiotic-resistant bacteria, the manufacture of AMPs relies on expensive, small-scale chemical methods. The small ubiquitin-related modifier (SUMO) tag is industrially practical for increasing the yield of recombinant proteins by increasing solubility and preventing degradation in expression systems. Results A new vector system, pKSEC1, was designed to produce AMPs, which can work in prokaryotic systems such as Escherichia coli and plant chloroplasts. 6xHis was tagged to SUMO for purification of SUMO-fused AMPs. Abaecin, a 34-aa-long antimicrobial peptide from honeybees, was expressed in a fusion form to 6xHis-SUMO in a new vector system to evaluate the prokaryotic expression platform of the antimicrobial peptides. The fusion sequences were codon-optimized in three different combinations and expressed in E. coli . The combination of the native SUMO sequence with codon-optimized abaecin showed the highest expression level among the three combinations, and most of the expressed fusion proteins were detected in soluble fractions. Cleavage of the SUMO tag by sumoase produced a 29-aa-long abaecin derivative with a C-terminal deletion. However, this abaecin derivative still retained the binding sequence for its target protein, DnaK. Antibacterial activity of the 29-aa long abaecin was tested against Bacillus subtilis alone or in combination with cecropin B. The combined treatment of the abaecin derivative and cecropin B showed bacteriolytic activity 2 to 3 times greater than that of abaecin alone. Conclusions Using a SUMO-tag with an appropriate codon-optimization strategy could be an approach for the production of antimicrobial peptides in E.coli without affecting the viability of the host cell. Electronic supplementary material The online version of this article (10.1186/s12896-019-0506-x) contains supplementary material, which is available to authorized users.
Current antibiotics have limited action mode, which makes it difficult for the antibiotics dealing with the emergence of bacteria resisting the existing antibiotics. As a need for new bacteriolytic agents alternative to the antibiotics, AMPs have long been considered substitutes for the antibiotics. Cecropin B was expressed in a fusion form to six-histidine and SUMO tags in Escherichia coli. Six-histidine tag attached to SUMO was for purification of SUMO-cecropin B fusion proteins and removal of the SUMO tag from cecropin B. Chimeric gene was constructed into pKSEC1 vector that was designed to be functional in both Escherichia coli and chloroplast. To maximize translation of the fusion protein, sequences were codon-optimized. Four different constructs were tested for the level of expression and solubility, and the construct with a linker, 6xHisSUMO3xGly-cecropin B, showed the highest expression. In addition, cleavage of the SUMO tag by SUMOase in the three fusion constructs which have no linker sequence (3xGly, three glycines) was not as efficient as the construct with the linker between SUMO and cecropin B. The cleaved cecropin B showed bacteriolytic activity against Bacillus subtilis at a concentration of 0.0625 μg/μL, while cecropin B fused to SUMO had no activity at a higher concentration, 0.125 μg/μL. As an expression system for AMPs in prokaryotic hosts, the use of tag proteins and appropriate codon-optimization strategy can be employed and further genetic modification of the fusion construct should help the complete removal of the tag proteins from the AMP in the final step of purification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.