The accuracy of wireless network packet simulation critically depends on the quality of wireless channel models. Path loss is the stationary component of the channel model affected by the shadowing in the environment. Existing path loss models are inaccurate, require excessive measurement or computational overhead, and/or often cannot be made to represent a given environment. This paper contributes a flexible path loss model that uses a novel approach for spatially coherent interpolation from available nearby channels to allow accurate and efficient modeling of path loss. We show that the proposed model, called Double Regression (DR), generates a correlated space, allowing both the sender and the receiver to move without abrupt change in path loss. Combining DR with a traditional temporal fading model, such as Rayleigh fading, provides an accurate and efficient channel model that we integrate with the NS-2 simulator. We use measurements to validate the accuracy of the model for a number of scenarios. We also show that there is substantial impact on simulation behavior when path loss is modeled accurately. Finally, we show that unlike statistical models, DR can make a simulation representative of a given environment by using a small number of seeding measurements. Thus, DR provides a cost-effective alternative to ray tracing or detailed site surveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.