Saponarin{5-hydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-7-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one}, a flavone found in young green barley leaves, is known to possess antioxidant, antidiabetic, and hepatoprotective effects. In the present study, the anti-inflammatory, anti-allergic, and skin-protective effects of saponarin were investigated to evaluate its usefulness as a functional ingredient in cosmetics. In lipopolysaccharide-induced RAW264.7 (murine macrophage) cells, saponarin (80 μM) significantly inhibited cytokine expression, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, inducible nitric oxide synthase, and cyclooxygenase (COX)-2. Saponarin (80 μM) also inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 involved in the mitogen-activated protein kinase signaling pathway in RAW264.7 cells. Saponarin (40 μM) significantly inhibited β-hexosaminidase degranulation as well as the phosphorylation of signaling effectors (Syk, phospholipase Cγ1, ERK, JNK, and p38) and the expression of inflammatory mediators (tumor necrosis factor [TNF]-α, IL-4, IL-5, IL-6, IL-13, COX-2, and FcεRIα/γ) in DNP-IgE- and DNP-BSA-stimulated RBL-2H3 (rat basophilic leukemia) cells. In addition, saponarin (100 μM) significantly inhibited the expression of macrophage-derived chemokine, thymus and activation-regulated chemokine, IL-33, thymic stromal lymphopoietin, and the phosphorylation of signaling molecules (ERK, p38 and signal transducer and activator of transcription 1 [STAT1]) in TNF-α- and interferon (IFN)-γ-stimulated HaCaT (human immortalized keratinocyte) cells. Saponarin (100 μM) also significantly induced the expression of hyaluronan synthase-3, aquaporin 3, and cathelicidin antimicrobial peptide (LL-37) in HaCaT cells, which play an important role as skin barriers. Saponarin remarkably inhibited the essential factors involved in the inflammatory and allergic responses of RAW264.7, RBL-2H3, and HaCaT cells, and induced the expression of factors that function as physical and chemical skin barriers in HaCaT cells. Therefore, saponarin could potentially be used to prevent and relieve immune-related skin diseases, including atopic dermatitis.
The FOSB gene is involved in cell proliferation, differentiation and transformation in several tumor types. We investigated whether coding single-nucleotide polymorphisms (cSNPs) and promoter SNPs of FOSB contribute to the development of papillary thyroid cancer (PTC). We also assessed the associations between FOSB SNPs and the clinicopathological characteristics of PTC. One coding SNP (rs2282695, Ala39Ala) and one promoter SNP (rs12373539, −158) in the FOSB gene were genotyped using direct sequencing in 94 PTC patients and 213 healthy controls. Genetic data were analyzed using SNPStats, HelixTree and SNPAnalyzer. PTC patients were dichotomized and compared with respect to clinicopathological characteristics of PTC. We detected an association between PTC and cSNP (rs2282695) in FOSB [codominant model 1 (C/C vs. G/C); OR=1.75; 95% CI, 1.04–2.94; P=0.024; codominant model 2 (C/C vs. G/G): OR=2.55; 95% CI, 1.15–5.64; P=0.045; dominant model: OR=1.89; 95% CI, 1.16–3.08; P=0.010; Log-additive model: OR=1.64; 95% CI, 1.15–2.35; P=0.007]. The G allele was a risk allele in the geno-type and allele analyses of cSNP (rs2282695) in the FOSB gene (OR=1.57; 95% CI, 1.10–2.24; P=0.012). A promoter SNP (rs12373539) in FOSB was associated with cervical lymph node metastasis of PTC [codominant model 1 (G/G vs. A/G): OR=0.23; 95% CI, 0.07–0.72; P=0.016; codominant model 2 (G/G vs. A/A): OR=0.21; 95% CI, 0.02–1.96; P=0.0.05; dominant model: OR=0.22; 95% CI, 0.08–0.66; P=0.004; overdominant model: OR=0.27; 95% CI, 0.09–0.84; P=0.02; log-additive model: OR=0.31; 95% CI, 0.12–0.78; P=0.006]. The A allele was a protective allele in the genotype and allele analyses of SNP (rs12373539) in the FOSB gene promoter (OR=0.34; 95% CI, 0.14–0.83; P=0.017). Variation in a FOSB cSNP (rs2282695) may be associated with risk of PTC. The FOSB promoter SNP (rs12373539) may be associated with lymph node metastasis of PTC.
Abstractprotection as well as inhibitory activities on xanthine oxidase, pancreatin, α-amylase, and angiotensin converting enzyme (Cho, 2005). Recently, it has been demonstrated that polyphenol compounds (PCRC), isolated from Bokboonja liquor, inhibits the CA secretory responses evoked by cholinergic (both muscarinic and nicotinic) stimulation as well as by direct membrane-depolarization from the isolated perfused adrenal gland of the normotensive rats (Kee and Lim, 2007) and spontaneously hypertensive rats (Yu et al., 2009). It seems that this inhibitory effect of PCRC is exerted by inhibiting both the Ca 2+ infl ux into the rat adrenal medullary chromaffi n cells and the uptake of Ca 2+ into the cytoplasmic calcium store partly through the increased NO production due to the activation of nitric oxide synthase (Kee and Lim, 2007;Yu et al., 2009).Generally, the presence of polyphenolic compounds isOriginal Article
Thyroid cancer refers to various cancers arising from thyroid gland. Differentiated thyroid cancers (DTCs) include papillary, follicular, and Hurthle cell carcinomas and represent cancers retain normal thyroid functions such as iodine uptake. Radioactive iodine (RAI) is generally used for upfront treatment of metastatic DTCs, but RAI refractory DTCs remain to be clinical challenges. Sorafenib and lenvatinib were approved for the treatment of RAI refractory DTCs and more recently, genomics-based targeted therapies have been developed for NTRK and RET gene fusion-positive DTCs. Poorly differentiated and anaplastic thyroid cancers (ATCs) are extremely challenging diseases with aggressive courses. BRAF/MEK inhibition has been proven to be highly effective in BRAF V600E mutation-positive ATCs and immune checkpoint inhibitors have shown promising activities. Medullary thyroid cancers, which arise from parafollicular cells of thyroid, represent a unique subset of thyroid cancer and mainly driven by RET mutation. In addition to vandetanib and cabozantinib, highly specific RET inhibitors such as selpercatinib and pralsetinib have demonstrated impressive activity and are in clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.