Phosphorus removal during discharge of wastewater is required to achieve in a very high level because eutrophication occurs even at a very low phosphorus concentration. However, there are limitations in the traditional technologies in the removal of phosphorus at very low concentration, such as at a level lower than 0.1 mg/L. Through a series of experiments, a possible technology which can remove phosphate to a very low level in the final effluent of wastewater was suggested. At first Al, Zn, Ca, Fe, and Mg were exposed to phosphate solution by impregnating them on the surface of activated alumina to select the material which has the highest affinity to phosphate. Kinetic tests and isotherm tests on phosphate solution have been performed on four media, which are Ca-impregnated activated alumina, activated alumina, Ca-impregnated loess ball, and loess ball. Results showed that Ca-impregnated activated alumina has the highest capacity to adsorb phosphate in water. Scanning electron microscope image analysis showed that activated alumina has high void volume, which provides a large surface area for phosphate to be adsorbed. Through a continuous column test of the Ca-impregnated activated alumina it was discovered that about 4,000 bed volumes of wastewater with about 0.2 mg/L of phosphate can be treated down to lower than 0.14 mg/L of concentration.
In many instances phosphorus is a limiting factor for eutrophication in streams, and lakes. Because wastewater treatment plant itself may be the main phosphorus source in a natural water body, removal of phosphorus in final effluent of wastewater treatment processes is required.Amongst various technologies for phosphorus removal in wastewater, adsorption technology was investigated using activated Ca-loess complex. Ca was added in loess to enhance adsorption capacity and intensity of phosphorus. Ca added loess was activated at a high temperature of 400 ℃ which turned out to be the optimum temperature. Activated Ca-loess complex below 400 ℃ had not enough strength to be applied as an activated Ca-loess pallet column in wastewater treatment process. Ca-loess complex which activated above 400 ℃ lost its adsorption capacity as the loess surface was glassified when the activation temperature reached above 400 ℃. Even if adsorption capacity of activated Ca-loess was not very high due to the lack of abundant pores on its surface, adsorption intensity was still high because it was activated with added Ca in loess.Activated loess was made by pallets. The activated loess pallets were filled in a column, and were applied in wastewater treatment process. Using an activated Ca-loess pallet column, total phosphorus (T-P) was reduced from about 0.5 mg/l to lower than 0.1 mg/l in wastewater treatment, and ionic phosphorus (phosphate) was completely removed for the four months of pilot plant operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.