The relatively high imaging speed of EPI has led to its widespread use in dynamic MRI studies such as functional MRI. An approach to improve the performance of EPI, EPI with Keyhole (EPIK), has been previously presented and its use in fMRI was verified at 1.5T as well as 3T. The method has been proven to achieve a higher temporal resolution and smaller image distortions when compared to single-shot EPI. Furthermore, the performance of EPIK in the detection of functional signals was shown to be comparable to that of EPI. For these reasons, we were motivated to employ EPIK here for high-resolution imaging. The method was optimised to offer the highest possible in-plane resolution and slice coverage under the given imaging constraints: fixed TR/TE, FOV and acceleration factors for parallel imaging and partial Fourier techniques. The performance of EPIK was evaluated in direct comparison to the optimised protocol obtained from EPI. The two imaging methods were applied to visual fMRI experiments involving sixteen subjects. The results showed that enhanced spatial resolution with a whole-brain coverage was achieved by EPIK (1.00 mm × 1.00 mm; 32 slices) when compared to EPI (1.25 mm × 1.25 mm; 28 slices). As a consequence, enhanced characterisation of functional areas has been demonstrated in EPIK particularly for relatively small brain regions such as the lateral geniculate nucleus (LGN) and superior colliculus (SC); overall, a significantly increased t-value and activation area were observed from EPIK data. Lastly, the use of EPIK for fMRI was validated with the simulation of different types of data reconstruction methods.
Resting‐state functional magnetic resonance imaging (fMRI) has been used in numerous studies to map networks in the brain that employ spatially disparate regions. However, attempts to map networks with high spatial resolution have been hampered by conflicting technical demands and associated problems. Results from recent fMRI studies have shown that spatial resolution remains around 0.7 × 0.7 × 0.7 mm
3
, with only partial brain coverage. Therefore, this work aims to present a novel fMRI technique that was developed based on echo‐planar‐imaging with keyhole (EPIK) combined with repetition‐time‐external (TR‐external) EPI phase correction. Each technique has been previously shown to be effective in enhancing the spatial resolution of fMRI, and in this work, the combination of the two techniques into TR‐external EPIK provided a nominal spatial resolution of 0.51 × 0.51 × 1.00 mm
3
(0.26 mm
3
voxel) with whole‐cerebrum coverage. Here, the feasibility of using half‐millimetre in‐plane TR‐external EPIK for resting‐state fMRI was validated using 13 healthy subjects and the corresponding reproducible mapping of resting‐state networks was demonstrated. Furthermore, TR‐external EPIK enabled the identification of various resting‐state networks distributed throughout the brain from a single fMRI session, with mapping fidelity onto the grey matter at 7T. The high‐resolution functional image further revealed mesoscale anatomical structures, such as small cerebral vessels and the internal granular layer of the cortex within the postcentral gyrus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.