Abstract. We show that some class of spacelike maximal surfaces and timelike minimal surfaces match smoothly across the singular curve of the surfaces. Singular Björling representation formulae for generalized spacelike maximal surfaces and for generalized timelike minimal surfaces play important roles in the explanation of this phenomenon.
The first author studied spacelike constant mean curvature one (CMC-1) surfaces in de Sitter 3-space S 3 1 when the surfaces have no singularities except within some compact subset and are of finite total curvature on the complement of this compact subset. However, there are many CMC-1 surfaces whose singular sets are not compact. In fact, such examples have already appeared in the construction of trinoids given by Lee and the last author via hypergeometric functions.In this paper, we improve the Osserman-type inequality given by the first author. Moreover, we shall develop a fundamental framework that allows the singular set to be non-compact, and then will use it to investigate the global behavior of CMC-1 surfaces.
Until now, the only known maximal surfaces in Minkowski 3-space of finite topology with compact singular set and without branch points were either genus zero or genus one, or came from a correspondence with minimal surfaces in Euclidean 3-space given by the third and fourth authors in a previous paper. In this paper, we discuss singularities and several global properties of maximal surfaces, and give explicit examples of such surfaces of arbitrary genus. When the genus is one, our examples are embedded outside a compact set. Moreover, we deform such examples to CMC-1 faces (mean curvature one surfaces with admissible singularities in de Sitter 3-space) and obtain "cousins" of those maximal surfaces.Cone-like singular points on maximal surfaces are very important, although they are not stable under perturbations of maximal surfaces. It is interesting to ask if cone-like singular points can appear on a maximal surface having other kinds of singularities. Until now, no such examples were known. We also construct a family of complete maximal surfaces with two complete ends and with both cone-like singular points and cuspidal edges.
Mathematics Subject Classification (2000). Primary 53A10; Secondary 53A35, 53C50.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.