Ochratoxin A (OTA), a mycotoxin, contaminates agricultural products and poses a serious threat to public health worldwide. Microbiological methods are known to be a promising approach for OTA biodegradation because physical and chemical methods have practical limitations. In the present study, a total of 130 fungal isolates obtained from 65 traditional Korean meju (a fermented starter for fermentation of soybeans) samples were examined for OTA-biodegradation activity using thin-layer chromatography. Two fungal isolates were selected for OTA-biodegradation activity and were identified as M036 and M074 through sequence analysis of the beta-tubulin gene. After culturing both isolates in Soytone-Czapek medium containing OTA (40 ng/ml), OTA-biodegradation activity was analyzed using high-performance liquid chromatography (HPLC). Both strains degraded OTA by more than 95.0% after 14 days, and the HPLC analysis showed that the OTA biodegradation by the strains led to the production of ochratoxin α, which is much less toxic than OTA. Moreover, crude enzymes from the cultures of A. tubingensis M036 and M074 led to OTA biodegradation of 97.5% and 91.3% at pH 5, and 80.3% and 75.3% at pH 7, respectively, in a buffer solution containing OTA (40 ng/ml) after 24 h. In addition, the OTA-biodegrading fungi did not exhibit OTA production activity. Our data suggest that isolates and their enzymes have the potential for practical application to reduce levels of OTA in food and feed.
Halosilylenoids, stable at room temperature (Tsi)X(2)SiLi (Tsi=C(SiMe(3))(3), X=Br, Cl), were synthesized from the reaction of TsiSiX(3) with lithium naphthalenide. Bromosilylenoid reacted with tBuOH and MeI both at -78 degrees C and at room temperature to give (Tsi)HSiBr(2) and (Tsi)MeSiBr(2), respectively, in high yields; this clearly shows its nucleophilicity. In the reaction of bromosilylenoid with methanol, 2-propanol, and 2,3-dimethyl-1,3-butadiene, the corresponding products, (Tsi)HSi(OMe)(2), (Tsi)HSi(OiPr)Br, and bromo(Tsi)silacyclopent-3-ene, were obtained in high yields; this demonstrates its amphiphilic property, as if bromosilylene would be trapped. Chlorosilylenoid also exhibited both nucleophilic and amphiphilic properties. The (29)Si chemical shifts for (Tsi)Br(2)SiLi, (Tsi)Br(2)SiK, and (Tsi)Cl(2)SiLi were 106, 70, and 87 ppm, respectively.
Lepidopteran insects use sex pheromones derived from fatty acids in their species-specific mate recognition system. Desaturases play a particularly prominent role in the generation of structural diversity in lepidopteran pheromone biosynthesis as a result of the diverse enzymatic properties they have evolved. These enzymes are homologous to the integral membrane desaturases, which play a primary role in cold adaptation in eukaryotic cells. In this investigation, we screened for desaturase-encoding sequences in pheromone glands of adult females of eight lepidopteran species. We found, on average, six unique desaturase-encoding sequences in moth pheromone glands, the same number as is found in the genome database of the fly, Drosophila melanogaster, vs. only one to three in other characterized eukaryotic genomes. The latter observation suggests the expansion of this gene family in insects before the divergence of lepidopteran and dipteran lineages. We present the inferred homology relationships among these sequences, analyze nonsynonymous and synonymous substitution rates for evidence of positive selection, identify sequence and structural correlates of three lineages containing characterized enzymatically distinct desaturases, and discuss the evolution of this sequence family in insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.