The wealth of a nation is changed by the internal economic growth of a nation and by the international trade among countries. Trade between countries are one of their most important interactions and thus expects to affect crucially the wealth distribution over countries. We reviewed the network properties of the international trade networks (ITN). We analyzed data sets of world trade. The data set include a total number of 190 countries from 1950 to 2000. We observed that the world trade network showed the uneven trading relationships which are measured by the disparity. The effective disparity followed a power law, < D(k) >∼ t δ , for the import and export network. We also construct the minimal spanning tree(MST) of international trade network, where each node is a country and directed links connecting them represent money flow from a source node to a target one. The topology of the MST shows the flow patterns of the international trades. From the MST we can identify the sub-economic zone if we delete the hub node. We observed that the cumulative degree distribution functions follow the power law, P>(k) ∼ k −α , with the average exponent α = 1.1(1)). We also calculated the betweenness centrality(BC) of the MST. The cumulative probability distribution of the betweenness centrality follows the power law, P>(BC) ∼ BC −β , with the average exponent β = 1.09(7).
We analyzed cross-correlations between price fluctuations of global financial indices (20 daily stock indices over the world) and local indices (daily indices of 200 companies in the Korean stock market) by using random matrix theory (RMT). We compared eigenvalues and components of the largest and the second largest eigenvectors of the cross-correlation matrix before, during, and after the global financial the crisis in the year 2008. We find that the majority of its eigenvalues fall within the RMT bounds [λ_, λ + ], where λ and λ are the lower and the upper bounds of the eigenvalues of random correlation matrices. The components of the eigenvectors for the largest positive eigenvalues indicate the identical financial market mode dominating the global and local indices. On the other hand, the components of the eigenvector corresponding to the second largest eigenvalue are positive and negative values alternatively. The components before the crisis change sign during the crisis, and those during the crisis change sign after the crisis. The largest inverse participation ratio (IPR) corresponding to the smallest eigenvector is higher after the crisis than during any other periods in the global and local indices. During the global financial the crisis, the correlations among the global indices and among the local stock indices are perturbed significantly. However, the correlations between indices quickly recover the trends before the crisis.
Multiple classes of interactions may exist affecting one another in a given system. For the mutualistic networks of plants and pollinating animals, it has been known that the degree distribution is broad but often deviates from power-law form more significantly for plants than animals. To illuminate the origin of such asymmetry, we study a model network in which links are assigned under generalized preferential-selection rules between two groups of nodes and find the sensitive dependence of the resulting connectivity pattern on the model parameters. The nonlinearity of preferential selection can come from interspecific interactions among animals and among plants. The model-based analysis of real-world mutualistic networks suggests that a new animal determines its partners not only by their abundance but also under the competition with existing animal species, which leads to the stretched-exponential degree distributions of plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.