An experimental study is performed to investigate the frequency effects of the excitation force on the linear stiffness and damping coefficients of a LOP (load on pad) type five-pad tilting pad journal bearing with the diameter of 300.91 mm and the length of 149.80 mm. The main parameter of interest in the present work is excitation frequency to shake the test hearing. The excitation frequency is controlled independently, using orthogonally mounted hydraulic exciters, as follows: 1) excitation frequency ratio in the x-axis direction νx = 0.5, 2) excitation frequency ratio in the y-axis direction νy = 0.6, 0.7, 0.8, 0.9. The magnitude of the excitation force is controlled to make sure that the test hearing has a linear behavior during the test. The relative movement between the bearing and shaft, and the acceleration of the bearing casing are measured as a function of excitation frequency using the different values of bearing load and shaft speed. Measurements show that the variation of excitation, frequency has quite a little effect on both stiffness and damping coefficients. The stiffness coefficients of the five-pad tilting pad journal bearing slightly decrease as the excitation frequency ratio increases, while the damping coefficients slightly increase with excitation frequency ratio, especially in the case of lower speed and higher load. Both direct stiffness and damping coefficients in the direction of bearing load decrease with an increase of shaft speed, but increase with the bearing load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.