ObjectiveTo assess the usefulness of a pressure algometer to measure pressure pain threshold (PPT) for diagnosis of myofascial pain syndrome (MPS) in the upper extremity and trunk muscles.MethodA group of 221 desk workers complaining of upper body pain participated in this study. Five physiatrists made the diagnosis of MPS using physical examination and PPT measurements. PPT measurements were determined for several muscles in the back and upper extremities. Mean PPT data for gender, side, and dominant hand groups were analyzed. Sensitivity and specificity of Fischer's standard method were evaluated. PPT cut-off values for each muscle group were determined using an ROC curve.ResultsCronbach's alpha for each muscle was very high. The PPT in men was higher than in females, and the PPT in the left side was higher than in the right side for all muscles tested (p<0.05). There was no significant difference in PPT for all muscles between dominant and non-dominant hand groups. Diagnosis of MPS based on Fischer's standard showed relatively high specificity and poor sensitivity.ConclusionThe digital pressure algometer showed high reliability. PPT might be a useful parameter for assessing a treatment's effect, but not for use in diagnosis or even as a screening method.
BackgroundVirtual reality (VR) is not commonly used in clinical rehabilitation, and commercial VR gaming systems may have mixed effects in patients with stroke. Therefore, we developed RehabMaster™, a task-specific interactive game-based VR system for post-stroke rehabilitation of the upper extremities, and assessed its usability and clinical efficacy.MethodsA participatory design and usability tests were carried out for development of RehabMaster with representative user groups. Two clinical trials were then performed. The first was an observational study in which seven patients with chronic stroke received 30 minutes of RehabMaster intervention per day for two weeks. The second was a randomised controlled trial of 16 patients with acute or subacute stroke who received 10 sessions of conventional occupational therapy only (OT-only group) or conventional occupational therapy plus 20 minutes of RehabMaster intervention (RehabMaster + OT group). The Fugl-Meyer Assessment score (FMA), modified Barthel Index (MBI), adverse effects, and drop-out rate were recorded.ResultsThe requirements of a VR system for stroke rehabilitation were established and incorporated into RehabMaster. The reported advantages from the usability tests were improved attention, the immersive flow experience, and individualised intervention. The first clinical trial showed that the RehabMaster intervention improved the FMA (P = .03) and MBI (P = .04) across evaluation times. The second trial revealed that the addition of RehabMaster intervention tended to enhance the improvement in the FMA (P = .07) but did not affect the improvement in the MBI. One patient with chronic stroke left the trial, and no adverse effects were reported.ConclusionsThe RehabMaster is a feasible and safe VR system for enhancing upper extremity function in patients with stroke.
ObjectiveTo replace camera-based three-dimensional motion analyzers which are widely used to analyze body movements and gait but are also costly and require a large dedicated space, this study evaluates the validity and reliability of inertial measurement unit (IMU)-based systems by analyzing their spatio-temporal and kinematic measurement parameters.MethodsThe investigation was conducted in three separate hospitals with three healthy participants. IMUs were attached to the abdomen as well as the thigh, shank, and foot of both legs of each participant. Each participant then completed a 10-m gait course 10 times. During each gait cycle, the hips, knees, and ankle joints were observed from the sagittal, frontal, and transverse planes. The experiments were conducted with both a camerabased system and an IMU-based system. The measured gait analysis data were evaluated for validity and reliability using root mean square error (RMSE) and intraclass correlation coefficient (ICC) analyses.ResultsThe differences between the RMSE values of the two systems determined through kinematic parameters ranged from a minimum of 1.83 to a maximum of 3.98 with a tolerance close to 1%. The results of this study also confirmed the reliability of the IMU-based system, and all of the variables showed a statistically high ICC.ConclusionThese results confirmed that IMU-based systems can reliably replace camera-based systems for clinical body motion and gait analyses.
ObjectiveTo compare the effect of two different hand exercises on hand strength and vascular maturation in patients who underwent arteriovenous fistula surgery.MethodsWe recruited 18 patients who had chronic kidney disease and had undergone arteriovenous fistula surgery for hemodialysis. After the surgery, 10 subjects performed hand-squeezing exercise with GD Grip, and other 8 subjects used Soft Ball. The subjects continued the exercises for 4 weeks. The hand grip strength, pinch strength (tip, palmar and lateral pinch), and forearm circumference of the subjects were assessed before and after the hand-squeezing exercise. The cephalic vein size, blood flow velocity and volume were also measured by ultrasonography in the operated limb.ResultsAll of the 3 types of pinch strengths, grip strength, and forearm circumference were significantly increased in the group using GD Grip. Cephalic vein size and blood flow volume were also significantly increased. However, blood flow velocity showed no difference after the exercise. The group using Soft Ball showed a significant increase in the tip and lateral pinch strength and forearm circumference. The cephalic vein size and blood flow volume were also significantly increased. On comparing the effect of the two different hand exercises, hand-squeezing exercise with GD Grip had a significantly better effect on the tip and palmar pinch strength than hand-squeezing exercise with Soft Ball. The effect on cephalic vein size was not significantly different between the two groups.ConclusionThe results showed that hand squeezing exercise with GD Grip was more effective in increasing the tip and palmar pinch strength compared to hand squeezing exercise with soft ball.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.