Directed energy deposition (DED) is an additive manufacturing technique wherein a focused thermal energy source and a coaxial powder delivery system are combined for the fabrication of metallic parts. Although rapid progress has been made in DED, the amount of research performed for in situ quality monitoring during fabrication is limited. Grain size monitoring during DED is particularly important because the grain size is directly related to the mechanical strength and stiffness of the final products. In this study, a layer-by-layer grain size estimation technique using femtosecond laser ultrasonics is developed for in situ monitoring during DED. The proposed technique employs fully noncontact and nondestructive testing for grain size estimation and uses the relationship between the laser-induced ultrasonic waves and the grain size. In addition to the in situ operation of the technique, spatial resolution in the micrometer range was achieved. The developed technique was validated using Ti-6Al-4V specimens fabricated by DED. The results of the quantitative grain sizes measured by the developed method were consistent with those measured through independent metallography conducted after the completion of DED.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.