Effect of bcc Cr80Mn20 seed layer and Cr50Ti50 amorphous texture inducing layer on the heteroepitaxy system in FePt-C granular film was studied by introducing a new concept of the layered structure. The concept suggested that the large grain seed layer in which the crystallographic texture was initially formed on an amorphous layer in the layered structure can reduce the angular distribution of (002) c-axis crystal orientation in the FePt-C granular film owing to heteroepitaxial growth. Structure analysis by X-ray diffraction revealed that (1) when the substrate heating temperature was elevated from 300 °C to 500 °C, grain size in the seed layer increased from 9.8 nm to 11.6 nm, and then decreased with further increasing the substrate temperature. The reduction of the grain size over 500 °C corresponds to the crystallization of the amorphous texture inducing layer, (2) when the grain size increased from 9.8 nm to 11.6 nm, the angular distribution of the (002) orientation in the seed layer dramatically decreased from 13.7° to 4.1°. It was shown that the large grain seed layer increased the perpendicular hysteresis in FePt-C granular film.
Cr 100-x Ti x amorphous texture-inducing layers (TIL) were investigated to realize highly (002) oriented L1 0 FePt-C granular films through hetero-epitaxial growth on the (002) textured bcc-Cr 80 Mn 20 seed layer (bcc-SL). Asdeposited TILs showed the amorphous phase in Ti content of 30 ≤ x (at%) ≤ 75. Particularly, films with 40 ≤ x ≤ 60 kept the amorphous phase against the heat treatment over 600 o C. It was found that preference of the crystallographic texture for bcc-SLs is directly affected by the structural phase of TILs. (002) crystallographic texture was realized in bcc-SLs deposited on the amorphous TILs (40 ≤ x ≤ 70), whereas (110) texture was formed in bcc-SLs overlying on crystalline TILs (x < 30 and x > 70). Correlation between the angular distribution of (002) crystal orientation of bcc-SL evaluated by full width at half maximum of (002) It is suggested that the reduction of (002) FWHM affects to the overlying MgO film as well as FePt-C granular film by means of the hetero-epitaxial growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.