Cell therapy remains an experimental treatment for neurological disorders. A major obstacle in pursuing the clinical application of this therapy is fi nding the optimal cell type that will allow benefi t to a large patient population with minimal complications. A cell type that is a complete match of the transplant recipient appears as an optimal scenario. Here, we report that menstrual blood may be an important source of autologous stem cells. Immunocytochemical assays of cultured menstrual blood reveal that they express embryonic-like stem cell phenotypic markers (Oct4, SSEA, Nanog), and when grown in appropriate conditioned media, express neuronal phenotypic markers (Nestin, MAP2). In order to test the therapeutic potential of these cells, we used the in vitro stroke model of oxygen glucose deprivation (OGD) and found that OGD-exposed primary rat neurons that were co-cultured with menstrual blood-derived stem cells or exposed to the media collected from cultured menstrual blood exhibited signifi cantly reduced cell death. Trophic factors, such as VEGF, BDNF, and NT-3, were up-regulated in the media of OGD-exposed cultured menstrual blood-derived stem cells. Transplantation of menstrual blood-derived stem cells, either intracerebrally or intravenously and without immunosuppression, after experimentally induced ischemic stroke in adult rats also signifi cantly reduced behavioral and histological impairments compared to vehicle-infused rats. Menstrual blood-derived cells exemplify a source of "individually tailored" donor cells that completely match the transplant recipient, at least in women. The present neurostructural and behavioral benefi ts afforded by transplanted menstrual blood-derived cells support their use as a stem cell source for cell therapy in stroke.
Stem cells isolated from amniotic fluid are known to be able to differentiate into different cells types, thus being considered as a powerful tool for cellular therapy of different human diseases. In the last 4 years, amniotic fluid-derived stem (AFS) cells have been shown to express embryonic and adult stem cell markers. These cells can be considered an intermediate stage between embryonic stem cells and adult stem cells. AFS cells can give rise to adipogenic, osteogenic, myogenic, endothelial, neurogenic, and hepatic lineages, inclusive of all embryonic germ layers. AFS cells have a high renewal capacity and can be expanded for over 250 doublings without any detectable loss of chromosomal telomere length. Taken together, all these data provide evidence that amniotic fluid represents a new and very promising source of stem cells for research, as well as clinical applications. Certainly stem cells from amniotic fluid will be useful both for a customized cell supply for newly born children and for banking cells to be used for therapeutic cell transplantation in immunogically matched recipients. Further investigations are also warranted to fully explore the amniotic cells' potential for adult human disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.