PurposeMesenchymal stem cells (MSCs) are multipotent and give rise to distinctly differentiated cells from all three germ layers. Neuronal differentiation of MSC has great potential for cellular therapy. We examined whether the cluster of mechanically made, not neurosphere, could be differentiated into neuron-like cells by growth factors, such as epidermal growth factor (EGF), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF).Materials and MethodsBMSCs grown confluent were mechanically separated with cell scrapers and masses of separated cells were cultured to form cluster BMSCs. As described here cluster of BMSCs were differentiated into neuron-like cells by EGF, HGF, and VEGF. Differentiated cells were analyzed by means of phase-contrast inverted microscopy, reverse transcriptase-polymerase chain reaction (RT-PCR), immunofluorescence, and immunocytochemistry to identify the expression of neural specific markers.ResultsFor the group with growth factors, the shapes of neuron-like cells was observable a week later, and two weeks later, most cells were similar in shape to neuron-like cells. Particularly, in the group with chemical addition, various shapes of filament structures were seen among the cells. These culture conditions induced MSCs to exhibit a neural cell phenotype, expressing several neuro-glial specific markers.Conclusionbone marrow-derived mesenchymal stem cells (BMSCs) could be easily induced to form clusters using mechanical scraping, not neurospheres, which in turn could differentiate further into neuron-like cells and might open an attractive possibility for clinical cell therapy for neurodegenerative diseases. In the future, we consider that neuron-like cells differentiated from clusters of BMSCs are needed to be compared and analyzed on a physiological and molecular biological level with preexisting neuronal cells, and studies on the possibility of their transplantation and differentiation capability in animal models are further required.
Here, we propose crystalline indium tin oxide/metal nanowire composite electrode (c-ITO/metal NW-GFRHybrimer) films as a robust platform for flexible optoelectronic devices. A very thin c-ITO overcoating layer was introduced to the surface-embedded metal nanowire (NW) network. The c-ITO/metal NW-GFRHybrimer films exhibited outstanding mechanical flexibility, excellent optoelectrical properties and thermal/chemical robustness. Highly flexible and efficient metal halide perovskite solar cells were fabricated on the films. The devices on the c-ITO/AgNW-and c-ITO/CuNW-GFRHybrimer films exhibited power conversion efficiency values of 14.15% and 12.95%, respectively. A synergetic combination of the thin c-ITO layer and the metal NW mesh transparent conducting electrode will be beneficial for use in flexible optoelectronic applications.
The surgical learning curve for robotic thyroidectomy performed by recently graduated fellowship-trained surgeons with little or no experience in endoscopic surgery showed excellent results compared with those in a large series of more experienced surgeons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.