Ginkgo biloba extract (EGb 761) exerts a neuroprotective effect against ischemic brain injury through an anti-apoptotic mechanism. Parvalbumin is a calcium buffering protein that plays an important role in modulating intracellular calcium concentration and regulating apoptotic cell death. The aim of this study was to investigate whether EGb 761 affects parvalbumin expression in cerebral ischemic injury. Adult male Sprague-Dawley rats were treated with vehicle or EGb 761 (100 mg/kg) prior to middle cerebral artery occlusion (MCAO) and cerebral cortex tissues were collected 24 h after MCAO. A proteomic approach revealed a reduction in parvalbumin expression in the vehicle-treated animals, whereas EGb 761 pretreatment attenuates the ischemic injury-induced decrease in parvalbumin expression. RT-PCR and Western blot analyses clearly confirmed the fact that EGb 761 prevents the injury-induced decrease in parvalbumin. Moreover, the results of immunohistochemical staining showed that the number of parvalbumin-positive cells was lower in vehicle-treated animals than in sham-operated animals, and EGb 761 averted this decrease. Thus, these results suggest that the maintenance of parvalbumin expression is associated with the neuroprotective function of EGb 761 against neuronal damage induced by ischemia.
Quercetin, a natural flavonoid, copiously exists in vegetable, fruits and tea. Quercetin is beneficial to neurodegenerative disorders via its strong anti-oxidant and anti-inflammatory activities. γ-Enolase is one of the enzymes of glycolytic pathway and is predominantly expressed in neuronal cells. The aim of the present study is to verify whether quercetin modulates the expression of γ-enolase in brain ischemic injury. Adult Sprague-Dawley male rats were subjected to middle cerebral artery occlusion (MCAO) and quercetin (50 mg/kg) or vehicle was administered by intraperitoneal injection at 1 h before MCAO onset. A proteomics study, Western blot analysis, reversetranscription-PCR, and immunofluorescence staining were conducted to investigate the change of γ-enolase expression level. We identified a decline in γ-enolase expression in MCAO-operated animal model using a proteomic approach. However, quercetin treatment significantly attenuated this decline. These results were confirmed using Western blot analysis, reverse transcription-PCR, and immunofluorescence staining techniques. γ-Enolase is accepted as a neuron specific energy synthesis enzyme, and quercetin modulates γ-enolase in a MCAO animal model. Thus, our findings can suggest the possibility that quercetin regulates γ-enolase expression in response to cerebral ischemia, which likely contributes to the neuroprotective effect of quercetin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.