BACKGROUND: Heavy metals contamination of soils in the vicinity of abandoned mines in South Korea has been investigated. However, PAHs contamination rarely has been studied. Both heavy metals and PAHs concentrations have been measured in this study. METHODS AND RESULTS: The samples of soil and sediment were collected from the vicinities of three abandoned coal mines and two abandoned metal mines for analysis of heavy metals contaminants and PAHs concentration from April to September 2012. After preparation of these samples following the Korean standard test method for soils, the concentrations of heavy metals contaminants and PAHs were measured using ICP-OES and GC-MS, respectively. It was observed that the concentration of Arsenic was above the concern level based on 'area 1' suggested by Korean soil conservation law, resulting that Arsenic is the main contaminant in these areas. Also Cd, Cu, Pb and Zn were observed as a partial contaminants. The concentrations of other investigated components including benzo(a)pyrene were less than the concern level. CONCLUSION:The correlation observed between Arsenic (as main contaminant) and PAHs concentrations suggested that the contaminant source and pathway are different for each other. The effect of mine activity on PAHs concentration was rarely observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.